
www.phparch.com

Better Practice

The Dev Lead Trenches:
Creating a Culture

Education Station:
Interview Coding
Challenges

Community Corner:
Community Review 2018

The Workshop:
Producing Packages,
Part Three

Security Corner:
Adventures in Hashing

finally{}:
The Seven Deadly Sins of
Programming: Greed AL

SO
 IN

SI
D

E

Custom Post Types
in WordPress

The Flexibility of Drupal 8

How to Learn PHP Unit
Testing With Katas

It’s About Time

December 2018
Volume 17 - Issue 12

Oscar
Free Sample

PHP[TEK] 2019
Conference

Loudermilk Conference Center
May 21-23, 2019

Atlanta, GA

CONFERENCE

The only conference that provides
deep-dive, sequential sessions for senior developers and

entry-level, need-to-know topics for beginners.

A conference experience tailored to meet
your learning needs.

tek.phparch.com

Save the Date!

 www.phparch.com \ December 2018 \ 25

FEATURE

It’s About Time
Colin DeCarlo

As applications scale and gain adoption, dates and time become much more of a concern
than they once were. Bugs crop up, and developers start learning the woes of time zones and
daylight saving time. Why did that reminder get sent a day early? How could that comment
have been made at 5:30 a.m. if the post didn’t get published until 9:00 a.m.? Indiana has how
man time zones?!

Luckily, PHP developers have the
tools they need to face these problems
head-on and take back control of their
apps.

Introduction
Time is a complicated concept. I’d

even go as far as saying it’s pretty much
impossible to understand completely.
Luckily though, we don’t need a
complete understanding of time to get
along, we just make it up as we go. It’s
a strange moment when you realize
time is both constant and completely
arbitrary all at the same…time. What’s
constant is, as the saying goes, “Time
waits for no man,” it just goes and goes
indefinitely. What’s arbitrary is how we
choose to measure it. For instance, have
you ever wondered why there are seven
days in the week?

Pushing the idea even further, have
you ever wondered why we even
measure time? What’s the purpose?
We measure time so we can record it,
specifically relative to significant events.
So what would you say is the most
significant event? Likely, the beginning
of time itself, and when was that? It
depends on whom you ask.

The term “epoch” represents an
instant in time chosen as a beginning,
or reference point, for the measurement
of the passage of time. In computing,
many epochs exist1 but in the web world,
only one is used as our anchor point,
the Unix epoch. The Unix epoch date
is midnight, January 1st, 1970 Coordi-
nated Universal Time (UTC). It’s this

1	 epochs exist:
https://phpa.me/wikip-notable-epochs

measurement of time PHP uses as it’s
own basis for time-related functionality.

What’s interesting is the Unix epoch
is translated and expressed in terms
of a different epoch. Nothing about
time is straightforward

Down to Basics
The most primitive time-related

function in PHP is time. time returns
the number of seconds which have
passed between the epoch and the
moment the function is invoked. The
return value is referred to as epoch
seconds or a timestamp. Epoch seconds,
on their own, aren’t handy. There isn’t
much you should do with them, though
there are many things that you could do
with them. Many developers use epoch
seconds to perform date arithmetic,
time zone conversions, and numerous
other functions. Thankfully, PHP ships
with a set of classes which provide an
abstraction over time which proves to
be much more useful and less error
prone than using time alone.

However, time isn’t the only function
in PHP which returns epoch seconds,
there’s also strtotime. This lovely func-
tion is enjoyable to use. What makes
it so much fun to toy around with
is strtotime translates most English
descriptions of dates and times and
convert them into epoch seconds with
remarkable effectiveness. For instance,
strtotime correctly interprets mundane
date strings like "2018-10-06" but
also wildly relative ones too like "first
Saturday of next month" and even "first
Saturday of next month plus one month".
Unfortunately, returning epoch seconds

wastes all this useful functionality, since
they don’t have much use on their own.
Not all is lost though, PHP’s DateTime
class wraps much of the functionality
of PHP’s date and time functions, for
instance, we can construct a DateTime
object with the same descriptions of
time that strtotime accepts. DateTime
objects can also be modified with a
similar syntax.

Moving up a rung in the ladder of
usefulness is the date function. date
accepts up to two arguments, a format
string and, optionally, an integer repre-
senting epoch seconds. As it’s return
value, date generates a date/time string
formatted according to the provided
format string for the provided time-
stamp relative to the current time
zone. Note that if no second argument
is supplied, date uses the current date
and time as the timestamp. date can
be useful in the presentation layer of
modern PHP applications as a prag-
matic way to display the copyright year.

The date function isn’t alone in its
responsibility to provide formatted,
human-readable date strings. It has
a companion function called gmdate.
When used, gmdate, as you may have
inferred, returns a formatted date
string relative to Greenwich Mean
Time (GMT). GMT is a special time
zone. Originating from the Royal
Observatory in Greenwich, London, it
is considered the basis for all other time
zones in the world. It has no offset from
UTC and does not observe daylight
saving time. These characteristics
make GMT, and transitively gmdate a
particularly useful time zone to work
with. Resultant times are consistent and
convert easily to other time zones.

phparch.com
https://phpa.me/wikip-notable-epochs

26 \ December 2018 \ www.phparch.com

It’s About Time

The DateTime Object
When working with time-based

data in your application, you’ll want
to stay away from using the basic date
and time functions for all but the most
straightforward cases. For instance,
tagging a filename with a timestamp or
perhaps displaying the current date in a
formatted string. For all other scenarios,
use instances of PHP’s DateTime class
because manipulating time-based data
is difficult and error-prone. Time has
a lot of edge cases (especially around
time zones) and adding and subtract-
ing a precise number of seconds from
a timestamp will not always yield the
desired result.

Constructing DateTime Objects
There are two direct ways to construct

DateTime objects, namely using the
DateTime constructor itself with new
or using the createFromFormat static
method. The DateTime constructor is
very versatile as it uses the same parser
as strtotime to understand it’s input,
therefore, you can use strings such as

“now”, “May 11th 2009”, “last day of next
month” and “2015-02-19 13:45:00” to
create your objects.

$tomorrow = new \DateTime("+1 day");

Additionally, the DateTime constructor
accepts a Unix timestamp prepended
with an @ symbol (e.g. @1483142400).
This call initializes the DateTime object
to the time specified by the timestamp
in the UTC time zone.

$tomorrow = new \DateTime("@0");

DateTime Constructor Gotchas
Sometimes you’ll get unexpected

results from constructing DateTime
objects.

When specifying dates without a
definite time portion the current time
is sometimes used (and sometimes
not). For instance, strings such as
"today", "yesterday", "tomorrow", "last
monday of next month", "March 31,

1981", and "2007-06-08" will result in
the time portion of the DateTime object
to be initialized to 00:00:00. However,

strings like "next week", "last Wednes-
day", "last day of next month", and "+1
week" initialize the time portion to the
current time.

Some date formats are ambiguous,
for instance "10-11-12" could represent
October 11th, 2012, November 10th,
201, or many other possibilities. In
instances such as this, PHP’s strtotime
parser is trained to use the separator as
a hint regarding how to parse the date.
This is due to different regions using
different separators; the order of year,
month, and day in the date string can
be guessed based on the customs of the
region.

In instances where we can interpret
the time zone from the date string, the
interpreted time zone overrides any
supplied or system default time zone.

When the format of the date string
is known, it is preferable to use the
DateTime::createFromFormat named
constructor. This is especially the case
if the incoming date strings have the
potential to be ambiguous. It is import-
ant to remember any portion of the
date and time not specified by the input
format are initialized to their current
value. That is, if the current time is
08:45:15, and the format string being
used to create the DateTime object is
Y-m-d, then the string 2009-05-11 creates
a DateTime object with value 2009-05-11
08:45:15. It is possible to override that
behavior, though, by using either the !
or | format modifiers. ! resets any fields
preceding the ! to the Unix epoch.

DateTime::createFromFormat(
 'Y-m-!d H:i:s', '2017-02-04 01:23:45'
);
// '1970-01-04 01:23:45

| resets any fields not parsed to the
Unix epoch.

DateTime::createFromFormat(
 'Y-m-d|', '2017-02-04'
);
// '1970-01-04 00:00:00'

Time Zones
Both the DateTime constructor and

createFromFormat static method accept
an optional DateTimeZone as their

final parameter. This object is used to
identify the time zone the resultant
DateTime is relative to. Note, however,
this optional parameter may be ignored
if the time zone of the date string used
to construct the object can be deter-
mined. For instance, if the DateTime
is constructed using a timestamp, the
time zone of the DateTime instance is
always UTC. This behavior is a common
gotcha for developers when they create
the DateTime object using a timestamp
(perhaps the created_at value of a data-
base record) passing in a DateTimeZone
instance relative to the users own time
zone. The poor developer suspects that
when the DateTime object is formatted
as a string—which appears to be in the
user’s time zone—only to find out they
are hours off the mark. Much confusion
can ensue! In scenarios such as this, the
time zone can only be changed after the
object is constructed using the setTime-
zone method.

The importance of using a DateTi-
meZone instance when constructing
DateTime objects with any non-relative
string values (e.g., 1982-08-18 04:13:12)
cannot be understated. The reason is
strings such as this contain no time
zone information, as such, the PHP
runtime’s default time zone setting
is used and may lead to hard to track
bugs if the default time zone is not the
intended time zone.

To mitigate the risks of constructing
DateTime objects relative to unintended
time zones, you should ensure PHP’s
default time zone is set to a known
value and not rely solely on a preset
value. Do this by either setting the
date.timezone directive in php.ini to a
specified, supported, time zone name.
If, however, you don’t have access to
the php.ini file, you can use the date_
default_timezone_set function early in
your application bootstrap to specify
the time zone you wish all dates and
times to be constructed relative to.

php.ini
date.timzone="UTC"

// bootstrap.php
date_default_timezone_set('UTC');

phparch.com

 www.phparch.com \ December 2018 \ 27

It’s About Time

Constructing DateTimeZone
The DateTimeZone constructor accepts a single string param-

eter used to identify the time zone the object represents. This
string can be either a supported time zone name2 or a string
identifying the number of hours and minutes offsetting the
time zone from UTC. (e.g. +0100 or -0400).

In applications which support users in multiple time
zones, it’s common to store a user’s time zone in their user
record. These time zones should be stored as one of the
PHP supported time zones and not as an offset. Time zone
names and offsets cannot be used interchangeably as some
time zones observe daylight saving time during the summer
months which temporarily change their offset by one hour.
As such, if you were to store each user’s time zone as an offset
from UTC (either in the standard +/-HHMM format or possi-
bly even the number of seconds), users in time zones which
do observe daylight saving time would have their dates and
times misreported for nearly eight entire months! Using a
supported time zone, on the other hand, ensures correct
reporting year round.

Time Zones And MySQL
MySQL supports three individual time zone settings, a

system time zone setting, a global (or server) time zone
setting, and a client time zone setting. The system time zone
is set when the MySQL server starts and can not be changed.
The global time zone setting has a default value of SYSTEM
(which references the system time zone) but may be changed
to something different either at start up or by a user with the
appropriate privileges. The client time zone setting is set on
each connection to the server; if not provided, the global
time zone setting is used.

MySQL uses the time zone setting in time functions like
NOW and CURDATE. More importantly, though, it is also used
when storing values into or retrieving values from TIMESTAMP
columns. Internally, MySQL stores all TIMESTAMP values as
epoch seconds, so a conversion is always performed from the
current time zone setting to UTC when storing data and from
UTC to the current time zone setting when retrieving data.

Aligning your time zone settings between PHP and MySQL
is necessary. If you aren’t careful, it will result in inconsistent
data which could lead to very difficult to track bugs.

For example, consider the following scenario:
The default PHP time zone is set to America/Toronto and

your application is querying a MySQL server configured to
use the UTC time zone. Your application is an e-commerce
platform and records every individual sale into a sales data-
base table.

2	 time zone name: http://php.net/timezones

When a sale is made, the sale details are saved to the data-
base with a query like:

INSERT INTO `SALES`
 (`item`, `purchase_amount`, `purchased_at`)
VALUES
 ('Watchamacallit', '1500', '2018-09-01 21:32:16')

At the time, your application believes this item was
purchased just after 9:32 p.m. on September 1st, 2018.
However, MySQL has also interpreted this sale as happening
just after 9:32 p.m. on September 1st, 2018 in the UTC time
zone which is four hours ahead of America/Toronto. Because
we’re not storing the timezone explicitly, the specific time can
be interpreted by both PHP and MySQL which could have
their assumption about the associated time zone.

This bug can go unnoticed indefinitely as long as the time
zone settings of both the PHP runtime and the MySQL server
never change. The PHP application can continue to happily
report dates and times relative to America/Toronto and the
MySQL server can continue to interpret them as relative to
UTC. Shenanigans!

Never Use a Time Zone Which Observes DST
Staying with the above scenario, avoid using a default time

zone setting which observes daylight saving. This is simply
due to the rules of daylight saving where once a year one day
has 2:00 a.m. twice and another day has no 2:00 a.m. at all.

The fallout from using a default time zone which observes
daylight saving can be quite severe if automated tasks are set
to execute at 2:00 a.m. 2:00 a.m. may seem like an obscure
time to choose to run tasks at, but it’s quite easy for this
scenario to arise. Consider the following.

Jane is a developer on the project and is asked to run daily
database backups. She references the server logs and identi-
fies there isn’t much load on the system in the early hours of
the day. Since this is a daily backup, it then makes sense to
schedule it for 12:00 a.m.

John is a data analyst on the project and needs to update
the Data Warehouse daily as well. He writes a script to
perform the update and sees the backup happens at 12:00 a.m.
Not knowing just how long the backup takes, he assumes it
couldn’t possibly take more than an hour and schedules his
update script to run at 1:00 a.m.

Finally, Mark, another developer on the project, needs to
ensure subscribers are charged for access to the application
on a monthly basis. He writes a script to identify users who
need to be charged based on the start of their subscription
and would like to schedule it to run daily. He sees the data-
base backups run at 12:00 a.m. and the Data Warehouse is
updated at 1:00 a.m. Mark then assumes the pattern is to
execute automated scripts at single hour intervals and sched-
ules his subscription script to run at 2:00 a.m.

Months later in early November, many complaints come
into customer service reporting users have been charged

phparch.com
http://php.net/timezones

28 \ December 2018 \ www.phparch.com

It’s About Time

twice for their monthly subscription.
As well, many customers have directly
contacted their credit card providers
and identified the second charge as
fraudulent. As a result, customer service
agents spend many hours handling
calls from angry subscribers, months
of subscription revenue is lost by agents
comping accounts to win back good
favor and the company’s reputation
with its creditors is tarnished leading to
harder to negotiate contracts.

The development team learns a valu-
able and costly lesson: daylight saving
time is the worst.

Listing All Available Time Zones
It’s possible, as in Listing 1, to gener-

ate a list of all available time zone names
using the listIdentifiers static method
on DateTimeZone. The method accepts
two optional parameters which can be
used to filter the listing based on time
zone region or country.

It’s possible (but difficult) to use this
method to create an exhaustive yet
unintimidating time zone selection
menu. However, you should try to avoid
such selection menus altogether. No
matter how you slice it down, there will
always be many time zones in the list,
and people get confused easily. There
are many services which can geolocate3
based on IP address or other provided
information such as an address. If
your application must support users in

3	 geolocate: https://www.maxmind.com/

different time zones, it’s best to try to
detect their time zone and allow them
to change it if they need to.

Date Arithmetic
Math with dates can be tricky because

the way we measure time itself isn’t
absolute. For instance, in most circum-
stances, a day lasts 86,400 seconds,
with the exception, of course, for days
in time zones which observe daylight
saving. In those time zones, one day has
90,000 seconds, and another has 82,800.

Luckily, it all comes out in the wash
by the end of the year, and we can
safely say a year has 31,536,000 seconds,
except when it doesn’t. Some years are
leap years where we need to add a day
to the year to align our calendars with
the position of the earth relative to the
sun as we’ve let it drift a little for the
past three years. Of course, leap years
aren’t every four years, that would be
ridiculous. Should we mention leap
seconds?

In the Gregorian calendar three
criteria must be taken into account
to identify leap years: The year can
be evenly divided by 4; If the year
can be evenly divided by 100, it is
NOT a leap year, unless; The year is
also evenly divisible by 400. Then it
is a leap year.

Bringing time back down to earth, a
month isn’t even a consistent number

of days; they either have 30 or 31 days
except, of course, one month that has
only 28 days except in some years
where it has 29. Time is constant and
out of our control, but our measure-
ment of it is entirely within our control
and full of exceptions. Entire days
have been wiped from the calendar as
if they never happened; no one was
born or died between October 4, 1582
and October 15, 1582, because those
days never existed. They were removed
from the calendar by Pope Gregory XIII
in the papal bull Inter gravissimas to
realign the vernal equinoxes.

Dates and calendars have confused
people long before computers
arrived on the scene. The 1908
Olympics were help in London,
which used the Gregorian calendar.
The Russia delegation set to partic-
ipate in the shooting competition
missed their event since they were
still on the Julian calendar. The
athletes showed up twelve days too
late.

All of this is to say, when doing date
arithmetic, be careful and don’t add
seconds to timestamps. Instead, you
can use a variety of methods which are
available on the DateTime instance.

Adding And Subtracting from
Dates

If you want to add or subtract some
amount of time to or from a DateTime
instance, you can use either the add or
sub methods, respectively. Each method
accepts as it’s argument, a DateInterval
representing the amount of time you
wish to add or remove.

A DateInterval can be constructed
using either the class’ constructor or by
using the static method createFromDat-
eString.

Constructing with the Constructor
The DateInterval constructor accepts

a string which adheres to the ISO8601
duration specification4. This specifi-
cation offers a very concise and exact

4	 ISO8601 duration specification:
https://phpa.me/wikip-iso8601-durations

Listing 1

 1. $all = DateTiemZone::listIdentifiers();
 2.

 3. $includingDeprecated = DateTimeZone::listIdentifiers(
 4. DateTimeZone::ALL_WITH_BC
 5.);
 6.

 7. $europeAndAsianRegions = DateTimeZone::listIdentifiers(
 8. DateTimeZone::EUROPE | DateTimeZone::ASIA
 9.);
10.

11. $excludingAntarctica = DateTimeZone::listIdentifiers(
12. DateTimeZone::ALL ^ DateTimeZone::ANTARCTICA
13.)
14.

15. $justCanada = DateTimeZone::listIdentifiers(
16. DateTimeZone::PER_COUNTRY, 'CA'
17.);

phparch.com
https://www.maxmind.com/
https://phpa.me/wikip-iso8601-durations

 www.phparch.com \ December 2018 \ 29

It’s About Time

way to represent an amount of time. An ISO8601 duration
takes follwoing form.

P[n]Y[n]M[n]DT[n]H[n]M[n]S

For example, P1Y3M26DT4H10M59S specifies a duration of
“One year, three months, twenty-six days, four hours, ten
minutes, and fifty-nine seconds.” Any portion of the speci-
fication can be omitted (except for the P) if it is not required
(e.g., P3M for “three months”) and any portion can exceed its

“standard” limit (e.g., PT48H for “forty-eight hours”).

Creating with createFromDateString
As an alternative, a DateInterval can be created using a

friendlier notation via the createFromDateString method.
This notation is certainly more verbose but much easier to
reason about for simple intervals. An interval of two weeks
can be created by passing the string "2 weeks" to this method.
Multiple portions of the interval can be specified as well, "3
months + 6 days" creates an interval lasting three months and
six days.

An alternative method which you can use to modify Date-
Time instances is the modify method. This method accepts
strings which look remarkably similar to the strings accepted
by the DateInterval::createFromDateString method. Almost
as if under the covers, a DateInterval is created from it and
passed into the add method, but it’s probably just a coinci-
dence.

A common gotcha and source of nasty bugs is that the
DateTime object is mutable. Meaning any time you use the add,
sub, or modify methods the object value is changed. Add this
behavior to the fact objects are passed by reference in PHP,
and you have a recipe for disaster. Any time you hand a Date-
Time object over to an outside function you are relinquishing
control over it, helpless to the possibility the function may
change its value. Thankfully, though, PHP 5.5 introduced the
DateTimeImmutable5 class which:

behaves the same as DateTime except it never modifies
itself but returns a new object instead.

5	 DateTimeImmutable: http://php.net/class.datetimeimmutable

Using DateTimeImmutable in place of DateTime protects your
application from this sort of bug at virtually no cost.

Comparisons
DateTime objects can be directly compared for equality

much the same as primitive values (see Listing 2). The relative
time zone of the DateTimes being compared is not considered
during the comparison. An excellent way to think about the
comparison is the objects are compared with respect to when
they are in time and not where they are.

Retrieving the Difference Between DateTime Objects
In addition to being able to compare two DateTime objects,

it can sometimes be useful to know the difference in time
between the two objects as well. The DateTime class offers the
diff method for these purposes. Passing a DateTime object
into the diff method returns a DateInterval object represent-
ing the difference in time between the two. The DateInterval
object has public attributes to specify the number of years,
months, days, hours, minutes, and seconds the two DateTimes
are from each other.

Closing Time
Just as the passage of time is inevitable, so too is the moment

when a developer has to come face to face with managing and
manipulating time. It’s important at that moment to remem-
ber many developers before you have also encountered these
exact issues. Proof of this is the existence of PHP DateTime
library and supporting functions. Using these functions
allows you to manage time effectively and efficiently and with
confidence.

 Colin is a senior developer with Vehikl, a
full services software consultancy, in
Waterloo, Ontario, Canada and co-organizer
of the GPUG PHP Users Group. With over a
decade of professional experience, Colin is
never put off by a good challenge. He enjoys
refactoring often neglected legacy code bases
as much as tackling the wide open space of
green field projects. No matter the context,
he puts great effort into delivering simple
solutions with as little code as possible.
@colindecarlo

Related Reading

•	 Education Station: Simple, Compact Time Range
Creation with Period by Matthew Setter. July 2017.
https://www.phparch.com/magazine/2017-2/july/

•	 Education Station: Date and Time Handling
with Carbon by Matthew Setter. January 2016.
https://www.phparch.com/magazine/2016-2/january/

•	 Leveling Up: Getting a Date with
PHP by David Stockton. May 2015.
https://www.phparch.com/magazine/2015-2/may/

Listing 2

 1. $utc = new DateTime(
 2. '2006-09-30 04:00:00',
 3. new DateTimeZone('UTC')
 4.);
 5. $toronto = new DateTime(
 6. '2006-09-30 00:00:00',
 7. new DateTimeZone('America/Toronto')
 8.);
 9.

10. $x = ($utc == $toronto); // true

phparch.com
http://php.net/class.datetimeimmutable
https://twitter.com/colindecarlo
https://www.phparch.com/magazine/2017-2/july/
https://www.phparch.com/magazine/2016-2/january/
https://www.phparch.com/magazine/2015-2/may/

http://phpa.me/mag_subscribe

	It’s About Time
	Colin DeCarlo

