
www.phparch.com

DevOps Depths

Internal Apparatus:
How PHP Works: Show Me
the Code

Education Station:
DevOps and You

The Workshop:
The Road to 7.3, Part One

Security Corner:
Strong Security Stance
in the New Year

finally{}:
Resolutions of Collaboration

AL
SO

 IN
SI

D
E

Diving in the
OPcache

Making Executable
Images

Jenkins Automation

There Are No Snow
Days When You Work
Remote

January 2019
Volume 18 - Issue 1

Oscar
Free Sample

PHP[TEK] 2019
Conference

Loudermilk Conference Center
May 21-23, 2019

Atlanta, GA

CONFERENCE

The only conference that provides
deep-dive, sequential sessions for senior developers and

entry-level, need-to-know topics for beginners.

A conference experience tailored to meet
your learning needs.

tek.phparch.com

Save the Date!

48 \ January 2019 \ www.phparch.com

Education Station

DevOps and You
Chris Tankersley

The tech industry is always awash with new ideas that are actually old. One which
gained traction in the last ten years is the idea of “DevOps.” This term is the
combination of “Development” and “Operations” and is meant to show these two
roles can be combined for more efficiency.

In the past (and, still, in many places
now), most organizations split their
teams into two roles: one team made
up of the developers and another one
for operations roles. Developers would
work on an application, be it an internal
application or a website, and then hand
it off to operations. Operations handled
all of the hardware and installed appli-
cations. When you needed more RAM,
they would provision it. Need updates
installed? That was all them.

This division was in part due to how
many organizations were structured
but also fed into existing stereotypes.
Developers did not care about perfor-
mance or security. Operations didn’t
know how to build tools. They were two
teams ever at odds with each other, but
dependent on the other’s tool sets.

Rise of the Webmaster
The funny thing is, “DevOps” is the

same thing many older web developers
have already done. When I started
creating websites, I not only had to learn
HTML but also how to get them out on
the internet. Sure, I could have run my
server at home from the confines of my
dial-up connection, but then no one
could experience my awesome Final
Fantasy VII Fan Site.

Early web developers had to learn
how to use things like FTP to get their
files online. Once you learned how to
get your files on the server, you had to
keep them up-to-date. We joke all the
time about editing in production, but
for many people “being online” was not
a constant. We edited our local copy
and then pushed it to the server. For
me, that meant learning and scripting
FTP commands.

PHP filled this niche in very well. It
was straightforward to set up and did
not require near the amount of extra
work other languages like ASP or Perl
needed to execute. You could get away
with just FTPing files up, and they were
immediately available.

It was not uncommon for web devel-
opers to also have to learn how email
servers worked to send and receive
messages. Why? Because computers
are all alien devices and, of course, the
web developer knows how to make the
server work. So you learned how email
servers worked, which meant learning
Linux or Windows even in depth.

Then you had to secure the server
after your first hack. You did all of
this while refining your deployment
processes because now you had less
time in the day as you split between
development, server work, and routine
things. Burnout loomed on the horizon.

For many people, getting a job that
removed all this work was a good thing.
It meant you could focus on what you
wanted, either the operations side or
the development side while ignoring
the other stuff. That was another team’s
problem.

Lean Manufacturing
In many “enterprise” environments,

things were more segregated. I put
enterprise in quotes because being
“enterprise” is a state of mind, not
anything directly related to a compa-
ny’s size. There are many advantages
to organizing teams into specific disci-
plines, but it can create a lot of red tape.

For example, at a previous job when
we needed to get vendor software

installed, we had to deal with the oper-
ations team. They would take our specs
for the software and purchase a server.
That server would then get delivered,
and installed by them. They would
provision the OS and give us just what
access we needed (at the time, jailed
FTP access). That was all you got. You
rarely got full shell access, so tools like
Composer or Git were impossible to
run yourself.

Many companies were already
subscribing to the “Lean Manufac-
turing” tenets companies like Toyota
had helped pioneer and champion.
Ironically, according to devops.com1,
Toyota was inspired by the assembly
lines Henry Ford pioneered, reinforcing
that what is old is new again. Toyota
saw many ways they could increase
efficiency and reduce costs by making
changes to their processes.

Lean Manufacturing led to “Contin-
uous Improvement,” which meant
evaluating ways to reduce waste (or
“muda”) by:

• Keep inventory at a minimum
• Minimizing the order queue
• Maximizing the efficiency of the

manufacturing process
Waste means many things, not just

physical waste of space and parts.
Taiichi Ohno, the “father” of the Toyota
Production System, saw seven forms of
waste:
1. Transport: Moving things around

more than required
2. Inventory: All of the components in

all stages of work

1 devops.com:
https://phpa.me/origin-devops

phparch.com
https://phpa.me/origin-devops

 www.phparch.com \ January 2019 \ 49

Education Station
DevOps and You

3. Motion: People/equipment moving
more than required

4. Waiting: Dead time between steps
5. Overproduction: Making more

than is needed
6. Over Processing: Doing more to a

product than required
7. Defects: Time spent fixing mistakes

Do some of these things sound
familiar? These forms of waste are
found in most teams’ development
processes. Developers and system oper-
ators saw many of these tenets that were
being used and wanted to use them to
improve their processes.

In 2008, Andrew Schafer hosted a
“Birds of a Feather” meeting to talk
about something called “Agile Infra-
structure.” Agile had been around in
software development in various forms
since 1957 at IBM2, but in the land of
operations, it was a bit different.

One person showed up, a Belgian
project manager named Patrick Debois.
Debois was frustrated by the roadblocks
he encountered while working on a
government project to migrate data
centers. Debois and Shafer formed the
“Agile Systems Administrator” group.

Nothing much of import happened
until they saw a 2009 presentation by
Flickr employees John Allspaw and Paul
Hammond. Allspaw and Hammond
talked about how Flickr ran multiple
deployments throughout the day. This
presentation, “10+ Deploys Per Day:
Dev and Ops Cooperation at Flickr” is
regarded as a seminal moment in the
creation of DevOps. Debois ended up
creating the DevOpsDays conference
after this.

What is DevOps?
Unfortunately, there is no formal defi-

nition for DevOps. The closest thing we
have is from Len Bass, Ingo Weber, and
Liming Zhu from the Software Engi-
neering Institute, which is that DevOps
is “a set of practices intended to reduce
the time between committing a change
to a system and the change being placed

2 since 1957 at IBM:
https://phpa.me/wikip-agile-software

into normal production, while ensuring
high quality.”

The definition is vague, but my hot
take on this is that nearly ten years later
DevOps has turned into a catchall term
for what we used to call a Webmaster,
but with a bunch of cool new toys to
play with. I feel we are getting away
from the original ideas that worked
in Lean Manufacturing and that we
learned in Agile.

To me, DevOps is not a job title. You
should not be hiring someone that is
“DevOps certified” or is a “DevOps
engineer.” DevOps is a process everyone
should follow to empower the team to
deploy and deliver software quickly and
efficiently without the cruft that came
with the tools from much of the nineties
and early 2000s.

Removing Waste
If you want to embrace DevOps truly,

you first need to look at your waste. In
the following articles, I will go into more
detail, but DevOps’ goal is removing
barriers. We want to make it as easy as
possible for developers to push code
out, and to define the systems they need.

Transport
How hard is to move code back and

forth? In an ideal setup, a developer can
check out their code from a repository,
do their work, and check it back in.
From there it should be a highly auto-
mated, simple process to move the code
into production. You do not need fancy
tools for this.

Once a developer is done with a
branch, what are the steps to get that
code onto a staging server? Who or
what runs the unit tests for verifica-
tion? Is it hard? How many steps are
there? Start by looking at the process to
remove what is unnecessary and auto-
mate where possible.

For example, you can set up a Jenkins
install that pulls down code from each
branch as it is checked in, and runs all
of your unit tests. If it’s green, you can
look into having it automatically pushed
to a staging server. You do not need
anything complicated like Kubernetes

or Docker. Instead, sprinkle some auto-
mation into your existing workflow.

Inventory
Slim down your code inventory. Use

something like tombstones3 to look
for and remove dead code. Check your
code coverage for code which doesn’t
execute during tests. Is it just a lack of
coverage or is it because it no longer
gets called?

Do you have code that is commented
out? Delete it! There is a reason we have
source control systems; use them.

How much of your code can you
move to third-party packages? It may
be worth it to start to move to those
packages and get rid of the time it takes
to maintain things. On the flip side, do
you componentize the internal code of
your application? Why? It may be easier
to have a monolithic application than a
small main app that pulls in a bunch of
internal dependencies.

When it comes to your repository,
keep it lean as well. Delete old branches
which are no longer used. If you are
using something like GitFlow, should
you be? Do not make code management
any more complicated than needed.

Motion
How many places must you check

to get information? If your code is in
Github, but your continuous integration
is in Jenkins, and your code deployment
is controlled by Kubernetes, you may
need to go to three different places to
find out the state of your application.
Find ways to bring all this information
together into one place.

If you find yourself having tens of
tabs open during the day just to check
things, take a step back. Figure out
what information is essential. Can you
consolidate some of these things? What
about removing tools altogether?

Waiting
PHP developers do not get to use the

“I’m compiling!” excuse for their down-
time, but we sure get to use “it’s building

3 tombstones:
https://phpa.me/-tombstone-programming

phparch.com
https://phpa.me/wikip-agile-software
https://phpa.me/-tombstone-programming

DAYCAMP 4 DEVELOPERS

BEYOND PERFORMANCE
JANUARY 18, 2019

Register Today
 https://phpa.me/daycamp-4-devs

Developers, teams, and companies have to be on the lookout for
ways to make their applications perform faster; they have to look
“Beyond Performance”.

That is the theme of this next Day Camp 4 Developers and
that is what our speakers will help you do, look beyond
performance. We are countering everything from what makes PHP
tick, to multi-threaded, non-blocking programming in PHP.

High Performance Web Services With Php
Demin Tin

How PHP Ticks
Sara Golemon

Asynchronous Expressive
Matthew Weier O’Phinney

Evented Architectures
Jesse Decker

Php + Redis + Nginx = Ludicrous Speed
Jason McCreary

https://phpa.me/daycamp-4-devs

 www.phparch.com \ January 2019 \ 51

Education Station
DevOps and You

and deploying!” in many modern work-
flows. Is anything blocking a developer
from working while other processes
run? Why?

I am by no means advocating
working ourselves to the bone—nor
ignoring breaks, but are developers
stuck frequently? Can your developers
not check something until the code is
deployed to a test server? At my day
job, a deploy takes upwards of twenty
minutes, but during that time I can
work on other things.

Waiting may be something as simple
as waiting for your continuous integra-
tion server to give you the green light.
Can this be sped up? Are developers
blocking because they must wait for the
CI to run? Alternatively, is this the only
way for them to know their tests pass?

Overproduction
Are you building just the parts you

need to? This is a general Agile Devel-
opment practice. I’m not talking about
actual features on the board. When
building something out in the code are
you adding interfaces for the sake of
having interfaces, or do you need them?
Should a process need as many objects,
factories, subclasses, or traits as you are
coding?

Agile and Iterative development tells
us we should not be building any more
than we need to. There are reasons we
have ideals like KISS4

and SOLID5. Do not over-engineer
your project any more than it needs.

On the systems side, do not over-en-
gineer your deployment process. Often,
I see people struggling to implement
Docker when they shouldn’t even be
using Docker in their process. Why are
they using Docker? Someone told them
they needed it without considering if it
makes sense. Do you need Kubernetes
when a simple Docker stack would
work? If not, do not use it!

Look at the all the tools you use,
and see if they make your life easier or
harder.

4 KISS: https://phpa.me/wikip-kiss-principle
5 SOLID: https://phpa.me/wikip-solid

Over Processing
Are you building features or changes

you think are needed, or you know are
needed? What does your backlog look
like for the next sprint? As a devel-
oper, you might have little say over the
features included in a release, but make
sure whatever you are working on is just
what is needed.

Building or planning features which
never come to fruition wastes time.
You may think you need to support
multiple API backends for some data,
but it turns out you might never need
to. Don’t build more support into an
application than needed.

Defects
Defects manifest in different ways

in the real world. It can be a failed
part breaking during your normal
day-to-day process, a stick of RAM
dying in the middle of your game, or a
chair leg coming off due to a loose bolt.
Whatever it is, the defect takes time out
of your day to deal with it.

The same thing happens in devel-
opment. When you discover a bug,
it should be taken care of right away
(or as quickly as possible). Doing so
diverts a developer’s attention and takes

valuable time away from working on
new features.

Unit tests, feature tests, system tests,
and others exist to help. If you start to
use practices like this, you can reduce
the waste that comes from dealing with
bugs once released into the wild.

DevOps—Lean Program-
ming and Lean Architecture

The original ideals of DevOps were to
reduce the friction between developers
and system operators. We so often get
wrapped up in processes and rules
that we forget development, especially
for web developers and the growing
number of software companies, should
be about making a product as efficiently,
quickly, and with the highest quality we
can.

DevOps is not some new or revolu-
tionary idea we just figured out ten years
ago; it’s just a new term for the same
thing we always wanted. It’s an easy way
to get our code into production without
being hindered by someone else.

The first thing we need to do is reduce
waste. With less waste, we can have
simpler systems. With simpler systems,
things break less often, and we can go
home on time.

 Chris Tankersley is a husband, father, author, speaker,
podcast host, and PHP developer. He works for InQuest, a
network security company out of Washington, DC, but lives in
Northwest Ohio. Chris has worked with many different
frameworks and languages throughout his twelve years of
programming but spends most of his day working in PHP and
Python. He is the author of Docker for Developers and works
with companies and developers for integrating containers into
their workflows. @dragonmantank

Related Reading

• Love/Hate—The Dysfunctional Relationship We Have With Tools
by Shahina Patel. February 2018.
https://www.phparch.com/magazine/2018-2/february/

• Education Station: Rock Your Deployments With Rocketeer
by Matthew Setter. April 2017.
https://www.phparch.com/magazine/2017-2/april/

• Deploying with Ansible by Ramon de la Fuente. August 2016.
https://www.phparch.com/magazine/2016-2/august/

phparch.com
https://phpa.me/wikip-kiss-principle
https://phpa.me/wikip-solid
https://twitter.com/dragonmantank
https://www.phparch.com/magazine/2018-2/february/
https://www.phparch.com/magazine/2017-2/april/
https://www.phparch.com/magazine/2016-2/august/

http://phpa.me/mag_subscribe

	DevOps and You
	Chris Tankersley

