
www.phparch.com

Building Bridges

Internal Apparatus:  
Hash Table Collisions

Education Station: 
Explicit is Better Than Implicit

Community Corner: 
Women in History Month

Security Corner: 
Intrusion Detection

finally{}: 
The Seven Deadly Sins of Programming: 
Envy

ALSO INSIDE

We Need a Bigger Boat 
Introduction to Scaling, Part Two

WordPress and the 
IndieWeb 
Why You Should Own Your Voice

Migrating Legacy Web 
Applications to Laravel

OAuth 2 
How It Works, Refresh Tokens, 
and the State Parameter

March 2019
Volume 18 - Issue 3



PHP[TEK] 2019 
Conference

CONFERENCE
tek.phparch.com

May 21-23, 2019 ◆ Atlanta, GA

A series of tracks dedicated to teaching you  
in-depth information about a specific topic  

lead by hand-picked experts  
chosen for their knowledge and presentation skills. 

A truly unique learning experience!

Tickets On Sale NOW!
Save 

$200 
til  

March 31st!



8  \  March 2019   \  www.phparch.com

FEATURE

Migrating Legacy Web Applications to Laravel
Barry O’Donovan

Thanks to Taylor Otwell’s Laravel framework, PHP is reclaiming its rightful place as the go-to 
language for web application development. For those of us maintaining and developing 
applications using legacy frameworks, the grass certainly looks greener on Laravel’s side. In 
this article, I show how to do an in-place migration from a legacy framework to Laravel.

Introduction
IXP Manager1 is an open source 

tool we developed at INEX2 for 
managing IXPs (internet exchange 
points—network switching centers 
which facilitate the regional exchange 
of internet traffic between different 
networks). It has run on Zend Frame-
work V1 (ZF1) since 2008.

Zend Framework 1 went end-of-life 
in 2016, but its obituary was written a 
couple of years before that. In 2015, we 
released V4 of IXP Manager which was 
a framework transition release. Over 
the course of nine minor releases of 
V4, we migrated from ZF1 to Laravel 
finally completing the project with V4.9 
released in January of 2019.

Admittedly, a two and half year 
transition sounds like a long time, but 
this was an in-place migration where 
Laravel handled new and migrated 
controllers while anything still to be 
migrated fell back on ZF1. You should 
also note the IXP Manager project has 
a single full-time developer plus me 
when time allows.

The Approach
There are two possible approaches to 

migrating your application to Laravel: 
a flag-day or an in-place/side-by-side 
migration.

Your gut feeling may lean towards a 
flag day—“let’s just get this done”—but 
it is the more drastic path. It means 
pausing all feature development and 
rewriting the application completely. 
In any project, commercial or open 
source, this is a difficult argument 

1 IXP Manager: 
https://www.ixpmanager.org
2 INEX: https://www.inex.ie

to make. For a commercial project, 
it puts a real cost on the migration: 
(number of developers * monthly salary * 
n months) + the opportunity cost of the 
development freeze where n will real-
istically be six months at an absolute 
minimum. This estimate is tough to get 
approved by the higher-ups! Plus, have 
you ever met a development project 
that finished on time? That six months 
can creep to a year and even beyond 
very quickly.

With the in-place migration, we add 
Laravel to our application so that it 
has the first opportunity to service a 
request (route). Otherwise, it hands off 
to the legacy framework. This approach 
has two immediate advantages: you 
can develop all new features immedi-
ately on Laravel as well as use Laravel 
features and facades within the legacy 
framework. It also means you can 
migrate legacy controllers on a case-by-
case basis as time and resources allow. 
Migrating the smaller/simpler legacy 
controllers are also excellent projects 
for interns, student work experience 
or new hires getting up to speed. The 
real cost is buried in day-to-day devel-
opment, there’s no promised flag-day 
deadline to miss, and there’s no frus-
trating feature freeze.

Making the Case
Part of making the case to fellow 

developers and decision makers in your 
organization is being able to reference 
that Laravel is now the number one web 
application framework on GitHub3- –
across all languages. Other important 
arguments include:
1. Prevent developer apathy: or, 

better phrased for management, 

3 web application framework on GitHub: 
https://github.com/topics/framework

retain key employees and attract 
more developers. Let’s face it, as 
developers we prefer to engage in 
projects that use current frame-
works and which support modern 
versions of PHP (i.e., greater than 
or equal to 7.1).

2. You have to eventually: this is a 
corollary of the above point. If you 
do not migrate to a modern frame-
work, then you inevitably face each 
of the following consequences. You 
hemorrhage employees/develop-
ers, and your code grows more 
outdated and consequently prove 
more difficult and costly to upgrade 
eventually. You’ll be running on 
frameworks that have passed 
end-of-life and end-of-support 
which means security holes will be 
discovered but remain unpatched 
and you’ll be forced to run older 
operating systems to run older 
versions of PHP for framework 
compatibility yielding yet more 
known but unpatched security 
holes.

3. Develop with modern techniques 
and services: Laravel makes it 
incredibly easy to use modern 
features such as job queues, an 
integrated command line inter-
face, broadcasting, caching, events 
with listeners, scheduling, modern 
templating engine, database 
abstraction, and ORM, and more.

4. Reference applications: refer to 
projects that successfully demon-
strate an in-place migration 
including IXP Manager which 
supports critical internet infra-
structure in 70 locations around 
the world and has successfully 

phparch.com
https://www.ixpmanager.org
https://www.inex.ie
https://github.com/topics/framework


 www.phparch.com  \  March 2019  \  9

Migrating Legacy Web Applications to Laravel

completed the migration, and LibreNMS4, a hugely 
popular network monitoring system with thousands of 
installations that is also well along the path of replacing a 
custom framework with Laravel.

Prerequisites
Before you start the process of integrating Laravel for an 

in-place migration, you need to ensure your existing applica-
tion is ready for it.

Your legacy application needs to use Composer, a depen-
dency manager for PHP. If you are not using it already, you 
need to integrate it into your application by using autoloaders 
(classmap, PSR-0/4) for existing namespaces (whether 
modern PHP namespaces or the Zend_ type prefix).

Your application should have a single point of entry (e.g., 
index.php). If it doesn’t, you can create an index.php to handle 
this by (carefully and securely) examining the $_REQUEST 
object and running the requested script from a new index.php.

Your application entry point should exist in a dedicated 
subdirectory such as public/—i.e., your web server should 
not expose the framework and other PHP files. This directory 
layout should be relatively easy to retrofit if not already in 
place.

The Migration

Step One: Install Laravel
The first step is to install the Laravel application base files 

alongside your existing application files. Begin by installing 
Laravel5 using its documentation into a separate directory 
and then move the files over to your application root direc-
tory in a piecemeal fashion.

You need to resolve any filename or directory conflicts, and 
you should do this by moving your files out of the way and 
renaming or refactoring them rather than altering Laravel’s 
files. The level of effort here is framework dependent, but the 
good news is that it was very easy for ZF1. I also looked at 
the file and directory structures for CodeIgniter and Symfony, 
and both also seem like they shouldn’t pose any significant 
problems. Lastly, if you are running a custom or non-appli-
cation framework (LibreNMS was in this category), you can 
still use the technique I am demonstrating here. Continue 
reading and pay particular attention to moving but keeping 
your index.php in step two below.

When you complete the file moves as shown by example in 
Listing 1, examine any files remaining in the Laravel directory 
and move them if necessary/desired. Also, note the example 
was based on Laravel v5.7 so your mileage may vary for other 
versions.

As well as the base Laravel files, you also need the actual 
Laravel framework and supporting packages. Integrate the 

4 LibreNMS: https://www.librenms.org
5 installing Laravel: https://laravel.com/docs/5.7

lines shown in Listing 2 to your composer.json file (ensuring 
you match this to your version of Laravel).

You should now run composer update to install Laravel and 
its dependencies. You should also examine the other sections 

Listing 1

 1. # Get the Laravel files from GitHub:
 2. git clone https://github.com/laravel/laravel.git
 3. 

 4. # Switch to the version of Laravel you want to migrate to:
 5. cd laravel
 6. git checkout vx.y.z
 7. 

 8. # Assuming you are in the new Laravel app directory above
 9. # and your legacy application is located at ../legacyapp
10. 

11. # You can start to move the files as follows (and feel free
12. # to break this into smaller steps if there are conflicts):
13. mv app/ artisan bootstrap/ config/ database/ package.json \
14.    phpunit.xml resources/ routes/ server.php storage/     \
15.    tests/ webpack.mix.js    ../legacyapp
16. 

17. mv .env.example ../legacyapp/.env
18. mv public/js/app.js ../legacyapp/public/js
19. mv public/css/app.css ../legacyapp/public/css
20. 

21. # For now, we ignore public/index.php and we do not need
22. # any of composer.json, readme.md, vendor/ or CHANGELOG.md

Listing 2

 1. {
 2.     "require": {
 3.         "fideloper/proxy": "^4.0",
 4.         "laravel/tinker": "^1.0",
 5.         "laravel/framework": "5.7.*"
 6.     },
 7.     "require-dev": {
 8.         "beyondcode/laravel-dump-server": "^1.0",
 9.         "filp/whoops": "^2.0",
10.         "fzaninotto/faker": "^1.4",
11.         "mockery/mockery": "^1.0",
12.         "nunomaduro/collision": "^2.0",
13.         "phpunit/phpunit": "^7.0"
14.     },
15.     "autoload": {
16.         "psr-4": {
17.             "App\\": "app/"
18.         },
19.         "classmap": [
20.             "database/seeds",
21.             "database/factories"
22.         ]
23.     },
24.     "autoload-dev": {
25.         "psr-4": {
26.             "Tests\\": "tests/"
27.         }
28.     }
29. }

phparch.com
https://www.librenms.org
https://laravel.com/docs/5.7


10  \  March 2019   \  www.phparch.com

Migrating Legacy Web Applications to Laravel

of Laravel’s composer.json file including the config, extra, and 
scripts sections and copy them across.

Before you proceed any further, you should check that your 
legacy application continues to work as expected. While we 
have installed Laravel’s files and supporting libraries, we have 
not changed index.php so your application should run as it 
always has. If you have integration tests, they can really shine 
here. If you don’t, consider writing them as you port func-
tionality over to Laravel. Diagnose and fix any issues now.

Step Two: Activate Laravel as the Default Framework
You need to verify you completed Step One successfully. To 

do this, move your index.php out of the way (e.g., mv index.
php legacy_index.php) and copy over Laravel’s own index.php 
to replace it. Ensure Laravel starts up instead of your legacy 
application. If it works, you should see the standard Laravel 
application welcome page. If this does not work, diagnose 
and fix those issues now.

When finished, leave Laravel’s index.php in place. The 
handoff to the legacy framework happens within the Laravel 
application and not index.php.

Step Three: Hand Off to Legacy Framework
There are two ways to hand off to the legacy framework I 

have seen in use: the way we did it with IXP Manager via a 404 
error handler and the way LibreNMS did it using a catch-all 
route. I show both methods here, and you can choose which 
suits you.

Using a 404 Handler
In Laravel, if a route does not exist to handle a request, it 

throws a 404 exception. In Laravel v5.7, this gets handled in 
app/Exceptions/Handler.php:

class Handler extends ExceptionHandler { 
    // ... 
    public function render($request, Exception $exception) { 
        return parent::render($request, $exception); 
    } 
}

We augment this render() function to handle 404 
exceptions differently by handing them off to the legacy 
framework—here’s a skeleton example.

use Symfony\Component\HttpKernel\Exception\{ 
    NotFoundHttpException }; 
 
public function render($request, Exception $exception) { 
   if( $exception instanceof NotFoundHttpException ) { 
      // pass to legacy framework - contents of index.php 
      die(); 
   } 
}

Before we fill in the detail of pass to legacy framework 
contents of index.php above, we need to decide how to 
actually handoff a request. We could jam in the contents 

of legacy_index.php and it would work fine. However, as 
we migrate more and more elements to Laravel, we’ll find 
various complications that make this unwieldy. A better way 
to handle the legacy framework within Laravel is to treat it 
as a service provider. For example, we could create a file app/
Providers/ZendFrameworkServiceProvider.php as shown in 
Listing 3.

IXP Manager’s actual production version of this can be 
seen here in our v4.8 GitHub tree6. You should note we 
have entirely removed Zend’s configuration INI files at this 
point and instead take the configuration directly from Lara-
vel’s config/ files. This configuration is passed into the legacy 
framework as an array. Our application only has one configu-
ration mechanism (more on this later).

Also, to make require_once "Zend/Application.php" work, 
we installed the ZF1 library via Composer. As mentioned 
above, you can use classmaps, PSR-0, or PSR-4 within 
Composer to ensure Laravel can resolve your legacy applica-
tion’s namespace.

Do not forget to register the new service provider in config/
app.php:

   'providers' => [ 
      // ... 
      App\Providers\ZendFrameworkServiceProvider::class, 
      // ... 
   ],

Now that we have our legacy framework service provider, 
we can return to the 404 exception handler’s (app/Exceptions/
Handler.php) render() function and fill in the missing piece:

// Render an exception into a HTTP response 
public function render( $request, Exception $exception ) { 
  if( $exception instanceof NotFoundHttpException ) { 
    // pass to legacy framework 
    App::make("ZendFramework")->run(); 
    die(); // prevent Laravel sending a 404 response 
  } 
}

6 can be seen here in our v4.8 GitHub tree: 
https://phpa.me/ipx-zfsp-480

Listing 3

 1. class ZendFrameworkServiceProvider extends ServiceProvider{
 2.    protected $defer = true;
 3. 

 4.    public function register() {
 5.       $this->app->singleton("ZendFramework",function($app){
 6. 

 7.          // here are the contents of the legacy index.php:
 8.          require_once “Zend/Application.php”;
 9.          $zf = new Zend_Application(
10.             $app->environment(), $this->createOptions()
11.          );
12. 

13.          return $zf->bootstrap();
14.       });
15.    }
16. }

phparch.com
https://phpa.me/ipx-zfsp-480


 www.phparch.com  \  March 2019  \  11

Migrating Legacy Web Applications to Laravel

There are some significant advantages to using a service 
provider and putting Laravel first:

• You can use all of Laravel’s facades immediately in your 
legacy code (e.g., Cache::, Queue::, Mail::, and more.)

• You can migrate code on an action by action basis rather 
than controller by controller or even have Laravel handle 
new action based requests for existing legacy controllers.

• you can eventually cleanly and simply remove the legacy 
framework by removing the 404 handler lines, the entry 
in config/app.php, legacy related packages from composer.
json, and the legacy service provider.

Using a Default Route
This is how the LibreNMS project handled the side-by-side 

migration. At the end of Laravel’s routes/web.php file, they 
added:

// Legacy Framework Routes 
Route::any( "/{path?}", "LegacyController@index" ) 
    ->where( "path", ".*" );

This route catches all routes not having a specific previous 
match in Laravel in the same way the 404 handler does. They 
then hand off to to the legacy framework in a controller (app/
Http/Controllers/LegacyController.php) as follows:

namespace App\Http\Controllers; 
class LegacyController extends Controller { 
    public function index($path = "") { 
        ob_start(); 
        include base_path("html/legacy_index.php"); 
        return response( ob_get_clean() ); 
    } 
}

It also works, but be aware you’ve entered Laravel’s HTTP 
kernel handling, and loaded and run all middleware associ-
ated with the web routes. This solution can be useful in some 
circumstances, but the 404 handler method is generally more 
efficient.

Continuing the Migration
You can proceed with the migration on a controller by 

controller basis (or action by action) along with the views and 
models as necessary.

Other Considerations

Parallel Configurations
For our project, our users download, install, and main-

tain it themselves. As the in-place migration went on for 
two years, it would have been entirely unreasonable—and 
downright confusing—to ask those users to configure and 
maintain settings in two different places and to use two 
different methods (ZF1’s application.ini file and Laravel’s 
.env).

Instead, we chose to configure everything in Laravel from 
the beginning. In our ZendFrameworkServiceProvider we then 
build an array using Laravel’s config() function in the same 
format ZF1 would have when reading the application.ini 
file. This array is then passed as a parameter when instanti-
ating the legacy service provider. We already provided a link 
to the production version of this file in GitHub above.

If your application is an in-house enterprise system or a 
cloud-based hosted service, this may not be an issue for you. 
However, if you expect your end users to install and configure 
the application, switching to use Laravel configuration only 
and passing that to the legacy framework is definitely the 
developer-friendly choice.

Session Management
I was quite worried about this one from the outset and had 

nightmares of the legacy framework and Laravel tripping 
over each other in PHP’s default session management system. 
Then, I discovered these comments within Laravel’s session 
middleware framework files:

// If a session driver has been configured, we will need  
// to start the session here so that the data is ready for  
// an application. Note that the Laravel sessions do not  
// make use of PHP "native" sessions in any way since they  
// are crappy.

I won’t start an argument on whether the statement is true 
or not, but from a migration point of view, it’s an advanta-
geous position for Laravel to take. Essentially, as Laravel 
implements its cookie-based session management system, 
there are no conflicts with any other legacy frameworks. It 
essentially just works.

If you need to access the Laravel session in your legacy 
code, you can use the Session:: facade.

User Authentication
Frameworks typically handle user authentication using 

sessions. As Laravel has its session management system, our 
goal is to ensure when a user has logged into one framework, 
they are logged into the other framework (and same for 
logging out).

We choose to leave the migration of the authentication 
controller until last—there was no particular reason for this, 
but it was going to be the first thing we did or the last. In the 
end, we just felt it was one of the more complex systems, and 
it would be easier to start with some of the simpler controllers. 
So we needed to ensure we logged into Laravel if we logged 
into ZF1 (and logged out as appropriate).

There are a few ways (and places) to handle this. We chose 
to add a block of temporary code to the top of routes/web.
php. Since it is executed on every request and it is a regularly 
edited file, we could be confident we would also remember 
to remove it when the migration was complete. It looked like 
this:

phparch.com


12  \  March 2019   \  www.phparch.com

Migrating Legacy Web Applications to Laravel

if( php_sapi_name() !== "cli" ) { 
   $auth = Zend_Auth::getInstance(); 
   if ($auth->hasIdentity() && Auth::guest()) { 
      Auth::login( 
          App\User::findOrFail($auth->getId())  
      ); 
   } else if( !$auth->hasIdentity() ) { 
      Auth::logout(); 
   } 
}

First, we do not run the code if we are running on the CLI 
(e.g., an Artisan command).

The if() statement says if we are logged into ZF1 and not 
Laravel, then log into Laravel. Conversely, the else if() asks 
if we are not logged into ZF1 then ensure we are also not 
logged into Laravel.

When the time comes to plan the migration of the authen-
tication system, it is an opportune moment to consider other 
enhancements including:

• integrate Laravel Socialite which allows users to log in 
with OAuth providers such as Facebook, Twitter, Linke-
dIn, Google, GitHub, GitLab, and many more;

• add two-factor authentication;
• add Log in As functionality which is useful for diagnos-

ing issues as end users see them (see the viacreative/
sudo-su package for an excellent example of this);

• and, of course, upgrade password hashing to bcrypt or 
Argon2.

Duplication of Views/Templates
One of the more significant headaches of an in-place migra-

tion is having to duplicate your layout views (menus, headers, 
footers, and others.) and maintain both versions during the 
process. When you do this, you want to keep the new Laravel 
view template layouts as close to the legacy ones as possible. 
Doing so ensures your end users do not realize two frame-
works are running the backend.

It doesn’t mean you can’t modernize the frontend libraries. 
For example, you could still upgrade from Bootstrap v2 to 
Bootstrap v4 and smooth out the differences with custom 
CSS.

Also, as you migrate actions and controllers, don’t forget to 
update links in both sets of views.

ORM/Database Model Migration
Laravel has a very nice ORM called Eloquent. It also has its 

DBAL (database abstraction layer) on which Eloquent is built. 
As you migrate the legacy application, you need to consider 
how best to migrate the legacy database code.

If you have been using PHP’s mysql_* functions directly 
or have built up a custom library to wrap the usage of these 
functions, you should bite the bullet and move to Eloquent as 
you migrate.

7 Laravel Doctrine: https://www.laraveldoctrine.org

Our situation with IXP Manager was a little different as we 
migrated to Doctrine2 in 2012 so we were already using a 
high-performance modern ORM library. Rather than try and 
migrate this, we were fortunate the Laravel Doctrine7 project 
provides a drop-in Doctrine2 implementation for Laravel 5+. 
This package allowed us to use our Doctrine entities and repos-
itories in both the legacy and Laravel framework in parallel.

Tracking Progress
Watching the number of legacy controllers (or files) you 

still have to reduce with each iteration helps track progress. 
Remove legacy code as each action/controller is migrated. 
A nice endorphin release accompanies removal when you 
commit and push deletions of legacy code!

The typical decision to migrate a controller was either:

• no urgent feature requests so pick off the next controller 
and migrate it; or,

• a new feature was required in a legacy controller. So the 
feature was implemented in Laravel as part migrating the 
controller.

About 18 months into the IXP Manager migration project, 
we estimated we were about 75 percent of the way to 
removing ZF1. The remaining legacy controllers were static 
code which was rarely touched. To bring it over the line, we 
put two months of concentrated effort into this while still 
not neglecting other smaller improvements, bug reports, and 
feature requests.

Summary
This article is a write-up of a talk I gave at the Laravel Live 

UK conference in 2018. Let me close with some encourage-
ment: while migrating a large application to a new framework 
is a daunting and time-consuming task, it is possible. IXP 
Manager has roughly 85k lines of PHP code, and we got 
through it with a single full-time developer in a little over two 
years while still adding and improving features.

Please feel free to reach out to me on @barryo79 with 
comments and questions.

 Husband, dad, network engineer, PHP 
programmer, geek, sci fi fan, political anorak, 
founder @IslandBridgeNet, packet shepherd 
with INEX @ComePeerWithMe. @barryo79

Related Reading

• Upgrading Old Legacy Apps to PHP 7 and Beyond  
by Sammy Kaye Powers. September 2019. 
https://phpa.me/powers-legacy-php7-beyond

• The Modernization of Multiple Legacy Websites 
by Jack D. Polifka. September 2016. 
https://phparch.com/magazine/2016-2/september/

phparch.com
https://www.laraveldoctrine.org
https://twitter.com/barryo79
https://twitter.com/barryo79
https://phpa.me/powers-legacy-php7-beyond
https://phparch.com/magazine/2016-2/september/


http://phpa.me/mag_subscribe

	Migrating Legacy Web Applications to Laravel
	Barry O’Donovan


