
www.phparch.com

The New
Frontend
Fundamentals

Internal Apparatus:
Patterns in the Code

Education Station:
What Went Wrong

Security Corner:
The Risk of Lists

finally{}:
The Seven Deadly Sins of Programming:
Wrath

ALSO INSIDE

Taming Twig
Crafting High-Quality DRY Templates

The New CSS

Advanced Caching for High
Throughput Dynamic Sites

April 2019
Volume 18 - Issue 4

Oscar
Free Sample

PHP[TEK] 2019
Conference

CONFERENCE
tek.phparch.com

May 21-23, 2019 ◆ Atlanta, GA

A series of tracks dedicated to teaching you
in-depth information about a specific topic

lead by hand-picked experts
chosen for their knowledge and presentation skills.

A truly unique learning experience!

Tickets On Sale NOW!
Special

Pricing

for

Individual

Tracks

 www.phparch.com \ April 2019 \ 35

Internal Apparatus

Patterns in the Code
Edward Barnard

The PHP compiler source code includes many patterns that can be frustrating and intimidating,
because they are so different from typical PHP code, until we understand the structure and context.
C’s preprocessor has a significant role in these unfamiliar patterns. We look at several of these
patterns in the compiler’s PHP Array implementation.

Working With the Code Base
Where shall we start? With a large code base, that’s always

a problem. We’re focused on the array implementation, called
hash tables in the source code. The three files of interest are:

•	 Zend/zend_types.h1—the different types of variables, but
also hash table details.

•	 Zend/zend_hash.h2—here is the API information for
using hash tables, but a whole lot more; we need to talk.

•	 Zend/zend_hash.c3—the array (hash table) implementa-
tion; it’s opaque until you get used to it.

Don’t forget the cross-reference tool lxr4 we described in
January 2019. It is your friend.

Function Declaration
The source code is difficult to follow until you get used to

it. Let’s take a few lines (Listing 1 Zend/zend_hash.c near line
1056) to illustrate the problem.

We looked at function signatures in January so that we can
make educated guesses about line 1:

•	 ZEND_API implies this function signature is part of the
internal API, i.e., that it’s a public function callable from
anywhere. (I guessed incorrectly; see below.)

•	 This function returns a pointer to a zval structure.
Conceptually that’s like how a PHP function/method can
return a PHP object, which is a pointer to the object. (A
zval is a general-purpose structure that can represent any
type of PHP variable.)

•	 Tell the compiler to generate the “fast call” calling
sequence if it can.

•	 The function requires three arguments—a HashTable
structure pointer; a Bucket structure pointer; a zend_
string structure pointer.

When terms, such as “structure” or “calling sequence,”
aren’t clear to me, I use Google. Most of the concepts are
well described on Wikipedia, YouTube, or somewhere. We’ll
continue explaining below.

1	 Zend/zend_types.h: https://phpa.me/php-src-zend-types
2	 Zend/zend_hash.h: https://phpa.me/php-src-zend-hash-hdr
3	 Zend/zend_hash.c: https://phpa.me/php-src-zend-hash
4	 lxr: https://php-lxr.adamharvey.name/source/

Let’s use lxr to search "define ZEND_API" (with the quotes).
We have six definitions, all similar. Let’s check Zend/configure.
ac5. The top line of the file says “Process this file with autoconf
to produce a configure script.” We’ll talk about autoconf some
other time.

The ZEND_API lines are:

#if defined(__GNUC__) && __GNUC__ >= 4
define ZEND_API __attribute__ ((visibility("default")))
#else
define ZEND_API
#endif

According to the GCC Wiki6 “visibility” is a C++ feature
that:

•	 Very substantially improves load times of your DSO
(Dynamic Shared Object)

•	 Lets the optimizer produce better code
•	 Reduces the size of your DSO by five to 20 percent
•	 Lowers the chance of symbol collision

5	 Zend/configure.ac: https://phpa.me/zend-configure
6	 GCC Wiki: https://gcc.gnu.org/wiki/Visibility

Listing 1. 01-set-bucket.c

 1. ZEND_API zval* ZEND_FASTCALL zend_hash_set_bucket_key
 (HashTable *ht, Bucket *b, zend_string *key)
 2. {
 3. uint32_t nIndex;
 4. uint32_t idx, i;
 5. Bucket *p, *arData;
 6.

 7. IS_CONSISTENT(ht);
 8. HT_ASSERT_RC1(ht);
 9. ZEND_ASSERT(!(HT_FLAGS(ht) & HASH_FLAG_PACKED));
10.

11. p = zend_hash_find_bucket(ht, key, 0);
12. if (UNEXPECTED(p)) {
13. return (p == b) ? &p->val : NULL;
14. }
15.

16. if (!ZSTR_IS_INTERNED(key)) {
17. zend_string_addref(key);
18. HT_FLAGS(ht) &= ~HASH_FLAG_STATIC_KEYS;
19. }

Sam
ple

phparch.com
https://phpa.me/php-src-zend-types
https://phpa.me/php-src-zend-hash-hdr
https://phpa.me/php-src-zend-hash
https://php-lxr.adamharvey.name/source/
https://phpa.me/zend-configure
https://gcc.gnu.org/wiki/Visibility

36 \ April 2019 \ www.phparch.com

Patterns in the Code
Internal Apparatus

This explanation clearly has nothing
to do with PHP’s array implementation.
In fact, ZEND_API doesn’t appear to have
anything to do with declaring an API at
all! What it does is tell the C compiler
how to best generate the object code.

This is the difficulty with a large code
base. You’ll need to jump down quite
a number of rabbit holes to see how
things are structured. At first, you won’t
be able to discern what’s important at
the moment and what isn’t. In many
cases, you can guess from the context
and move on. Go back and drill down
to the definition as needed. As we learn
how more and more pieces fit together,
we get a clearer picture of the whole.
Eventually, it starts to click and make
sense.

Variable Declaration
Lines 3-4 declare three variables

nIndex, idx, and i. PHP best practice
opts for long descriptive variable names.
C practice is often the opposite. These
days, typing speed is not the deter-
mining factor in how many lines of
code are produced per day. When C was
first in use, typing speed was a limiting
factor; often the programmer typed the
code across a slow connection. Picture
typing your code on a phone screen, in
an underground garage where you lose
the cell phone signal every few minutes
(just before clicking “save”), and you’ll
get the idea. Or, more commonly, the
code was typed on a keypunch with no
such thing as a backspace key. What-
ever the reason, the “short variable
name” habit has carried forward.

The variables are type uint32_t which
is the same as UNSIGNED INT in MySQL.
It’s a 32-bit number with no negative
numbers (no minus sign). The leftmost
bit, normally the sign bit, has no partic-
ular meaning.

PHP has no similar concept. Neither
does C, by the way, even though you
see it here. C programmers have vast
control over the C compiler and have
wide latitude in telling it what object
code to generate. uint32_t is a typedef7,

7	 typedef:
https://en.wikipedia.org/wiki/Typedef

that is, a definition of a data type. The
C standard library and POSIX reserve
the suffix _t.

Typedef
Line 5 declares two Bucket pointers.

How do we know what a Bucket is?
In PHP, we would look for the Bucket
class definition. In C it is likely to be in
a header file, and we’ll use lxr to find
it. Click on any of the results, and then
click on the word Bucket, and the click
takes you to the definition around line
229 of Zend/zend_types.h8. See Listing
2.

Line 5 tells us Bucket is a typedef
struct _Bucket. This is a common idiom
in C, and it’s somewhat like declaring
class properties in PHP.

The C keyword typedef means “create
an alias.” For example:

typedef long scoped;

We have just created a data type
called scoped. It is not a variable; it is
a data type. In PHP we have string,
int, float, and so on. In C we similarly
have char, long, double. Now, instead of
declaring a variable of type long, we can
declare it of type scoped. It’s weird but
is used continuously in C header files.
It’s aimed at making the C code more
intuitive and readable.

The C keyword struct describes
a “structured” data type. In this case,
_Bucket contains three fields. If we,
therefore, declare a variable of type
Bucket, that means the variable contains
those three fields. We could set the h
field in the bucket like this:

Bucket b;
b.h = 0;

8	 Zend/zend_types.h:
https://phpa.me/php-src-zend-types

The notation is somewhat like how
JavaScript accesses object properties.

Memory Pointer
PHP, in comparison to C, is a refined,

cultured language. C, by design, has
all the power of an assembly language
coupled with all the flexibility of an
assembly language.

The Unix operating system was
initially implemented9 in assembly
language. Because assembly code is tied
closely to the bare metal, when moving
to new hardware architecture, we can
not port assembly-language programs.
They need to be rewritten for the new
platform. Since it had to be rewritten
anyway, authors Dennis Ritchie and
Ken Thompson considered rewriting
it in a language called “B,” which was
Thompson’s simplified version of BCPL.

However, B was unable to take
advantage of some of the new hard-
ware’s features. It didn’t have the power
of an assembly language. Thus, C was
invented to have all the power of an
assembly language. The name “C” was
chosen simply as the next after B.

As a side note, BCPL was created as
a language for writing compilers. The
fact that the PHP compiler is written in
one of its direct successors, C, is both
elegant and exceedingly obscure trivia.
BCPL is a dead language, but its influ-
ence is still felt with Unix, Linux, iOS,
and the existence of all C-like languages.

Straight-up C programming, as
opposed to C++, C#, or other more-
modern variants, is dangerous. A
common outcome is the program
ending (crashing) with a “segfault.”
Arrays, for example, have no bounds
checks (by design!), so it’s easy to
corrupt the program space by storing

9	 initially implemented:
https://phpa.me/wikip-c-language

Listing 2. struct-bucket.c

 1. typedef struct _Bucket {
 2. zval val; /* hash value (or numeric index) */
 3. zend_ulong h; /* string key or NULL for numerics */
 4. zend_string *key;
 5. } Bucket;
 6. #define getBucket(b, n) ((Bucket *)((b) + ((n) * sizeof(Bucket))))

Sam
ple

phparch.com
https://en.wikipedia.org/wiki/Typedef
https://phpa.me/php-src-zend-types
https://phpa.me/wikip-c-language

 www.phparch.com \ April 2019 \ 37

Patterns in the Code

Internal Apparatus

an array value outside the array. C programmers need to be
careful about memory management, pointer calculations—
basically everything that’s in the program space.

Val Kilmer, Iceman: “You’re everyone’s problem. That’s
because every time you go up in the air, you’re unsafe. I
don’t like you because you’re dangerous.” Tom Cruise,
Maverick: “That’s right, Iceman. I am dangerous.” — Top
Gun (1986)

If you’re coming from PHP and beginning to read C,
remember it’s designed to work closely with the hardware. It’s
designed to be the computer, to see the computer. (See what
we did there, with B and C?) C is designed to be the operating
system (Unix/Linux) and the compiler. C is about bits and
bytes and memory locations.

A C variable is just an alias for a memory location. If a
Bucket structure is 128 bytes, an array of ten Buckets would
be 1280 bytes. Walking through the array of buckets would
mean skipping forward 128 bytes at a time.

There’s no such concept in PHP. In PHP, if we had an array
of ten Bucket objects, the array would contain ten pointers to
the ten objects.

In contrast, in C, we can ask for a slab of memory. The
memory allocator provides the starting address of that slab of
memory. Meanwhile, we have a Bucket pointer. Just stick the
memory slab’s location in that bucket pointer:

Bucket *b;
b = (Bucket *)malloc(...);

To move to the second bucket, still inside that single slab of
memory, we increment the pointer by the size of the Bucket
(128 bytes):

Bucket *nextBucket = b;
nextBucket += sizeof(Bucket);

We can produce bucket n as follows:

#define getBucket(b, n) ((Bucket *)((b) + ((n) * sizeof(Bucket))))

sizeof(Bucket) provides us the number of bytes in a bucket.
Multiply that by n and we have the byte address for bucket
n (counting from zero). Add that to the base address of the
memory slab, and we have the address of bucket n.

By defining this as a macro, the result becomes inline code
wherever the macro is used. We don’t incur the overhead of
a function call. The compiler may be able to optimize the
code further using the surrounding context. The source code
contains many such macros.

In Listing 1 line 5, arData is our pointer to that slab of
memory. p points to the individual bucket inside that slab of
memory.

More Macros
The next line of Listing 1 is IS_CONSISTENT(ht). The macro is

defined in Zend/zend_hash.c. Why would it be defined in the
.c file and not the header file? That, in effect, means it’s private.

Sam
ple

phparch.com
https://getmissioncontrol.io

38 \ April 2019 \ www.phparch.com

Patterns in the Code
Internal Apparatus

That macro is not available outside
the one file. This macro definition is a
useful pattern to recognize, so let’s take
a look, see Listing 3.

A glance at the code indicates we’re
doing some sanity checking when
deleting (destroying) the hash table
and releasing its memory. PHP garbage
collection can potentially have several
phases, but that’s a discussion for
another time. Right now we’re looking
for the pattern.

Line 1 is #if ZEND_DEBUG, and the last
four lines contain the else and endif. It
is a compile-time check. The choice is
made when compiling PHP. We can’t
run PHP with checking on one time
and off another. We’d need to recompile
PHP with ZEND_DEBUG defined or not
defined.

The function _zend_is_inconsistent
only gets compiled with the debug flag
on. Without ZEND_DEBUG, the function
won’t exist at all. With debugging on,

the IS_CONSISTENT(ht) macro does the
checking, passing in the file name and
line number for display purposes.

With debug off, the macro compiles
to nothing. The macro becomes empty
white space. Our line of code gets
reduced to the semicolon ;. Fortunately,
an empty statement is legal C code.
Multiple empty statements ;;; are
perfectly legal, just like with PHP.

Lines 30-32 show another common
idiom: do { ... } while (0). Here the
macro is introducing a block of code.
A do block executes at least once, just
like with PHP. The while(0) ensures it
executes only once.

However, unlike PHP, a variable can
be declared inside that do block, and
its scope is only inside that block. In
PHP, the variable is available anywhere
inside the function/method, but in C
it’s limited to the nearest enclosing set
of braces. In a macro, the do block tech-
nique allows the macro to stick multiple

lines of C code pretty much anywhere,
complete with temporary variables that
disappear at the end of the macro.

These code insertion techniques
can be maddening to follow, but they
provide a consistent way of source code
generation. The compiler then takes the
ugly result and compiles it into the most
efficient code it can.

In a #define, the backslash \ at the end
of the line says the definition continues
on the next line.

Again, the detail of the IS_CONSIS-
TENT(ht) macro doesn’t matter. What’s
important is recognizing the pattern so
you can understand what’s happening
without tripping over the details. The
PHP virtual machine, C code, gets
generated by a PHP script. So, unlike
standard PHP source code, much of the
Zend Engine (runtime PHP compiler/
interpreter) isn’t handcrafted like we
might expect.

Listing 3. consistent.c

 1. #if ZEND_DEBUG
 2.
 3. #define HT_OK 0x00
 4. #define HT_IS_DESTROYING 0x01
 5. #define HT_DESTROYED 0x02
 6. #define HT_CLEANING 0x03
 7.
 8. static void _zend_is_inconsistent(const HashTable *ht, const char *file, int line)
 9. {
10. if ((HT_FLAGS(ht) & HASH_FLAG_CONSISTENCY) == HT_OK) {
11. return;
12. }
13. switch (HT_FLAGS(ht) & HASH_FLAG_CONSISTENCY) {
14. case HT_IS_DESTROYING:
15. zend_output_debug_string(1, "%s(%d) : ht=%p is being destroyed", file, line, ht);
16. break;
17. case HT_DESTROYED:
18. zend_output_debug_string(1, "%s(%d) : ht=%p is already destroyed", file, line, ht);
19. break;
20. case HT_CLEANING:
21. zend_output_debug_string(1, "%s(%d) : ht=%p is being cleaned", file, line, ht);
22. break;
23. default:
24. zend_output_debug_string(1, "%s(%d) : ht=%p is inconsistent", file, line, ht);
25. break;
26. }
27. zend_bailout();
28. }
29. #define IS_CONSISTENT(a) _zend_is_inconsistent(a, __FILE__, __LINE__);
30. #define SET_INCONSISTENT(n) do { \
31. HT_FLAGS(ht) = (HT_FLAGS(ht) & ~HASH_FLAG_CONSISTENCY) | (n); \
32. } while (0)
33. #else
34. #define IS_CONSISTENT(a)
35. #define SET_INCONSISTENT(n)
36. #endif

Sam
ple

phparch.com

 www.phparch.com \ April 2019 \ 39

Patterns in the Code

Internal Apparatus

Reference Count
Listing 1 line 8 reads HT_ASSERT_RC1(ht);. We know the

pattern, so we can make some guesses. The answers, if you’re
interested, are at Zend/zend_hash.c near line 30. “Asserts” tend
to be active only in debug mode. Sure enough, without debug
mode, this macro compiles down to empty space.

The PHP compiler uses reference counts for various entities.
When the reference count drops to zero, perhaps as a result of
unset($variable) in your PHP code, the item’s memory can
be released and reused (in the “garbage collection” phase). In
PHP, for example, if you have two variables both pointing to
the same object instance, that object might have a reference
count of two. You’d have to unset both variables before that
object can safely disappear.

With HT_ASSERT_RC1(ht), the HT_ prefix is used all over the
hash table feature code. The pointer to the hash table is often
a variable named ht. So we can pretty well guess this is a
sanity check (used in debug mode only) that our hash table
has a reference count of one. The hash table is the internal
representation of one specific array. The hash table code is
written in such a way that the reference count is always one.
So the sanity check makes sense.

Packed Hash Table
An ordered list of values such as [1, 1, 2, 3, 5, 8] is a

special case. The array keys are consecutive integers begin-
ning with 0. PHP (written in C) stores the array as a packed
hash table. The array value is stored in that Bucket we’ve been
discussing. We either store the value directly if it’s small
enough (int, float, or bool), or we store the pointer to the
separate slab of memory containing that value.

Remember, the array is actually the ordered set of key-value
pairs:

[0 => 1, 1 => 1, 2 => 2, 3 => 3, 4 => 5, 5 => 8]

We store key/value n in bucket n. $array[0] is in bucket
0; array[4] is in bucket 4, and so on. It’s simple and efficient.

If the array is not a “packed” array, it’s more difficult to
find which bucket contains our array element. We transform
the array key through a hashing function to find a possible
bucket number. More than one key could hash to the same
bucket number. So we check that possible bucket to see if it
is the right key. If not, we follow its link to the next possible
bucket, and so on down the collision chain until we find the
matching key or fail completely (the array key does not exist).

Listing 1 line 9 reads ZEND_ASSERT(!(HT_FLAGS(ht) & HASH_
FLAG_PACKED));. The ASSERT is no doubt a sanity check only
active in debug mode. The answer is in Zend/zend_portabili-
ty.h near line 100. What’s interesting to us is the FLAG pattern.
It’s important to recognize and understand.

However, first, let’s note the overall intent of this line. We’re
asserting that the “packed” flag is not set. This function (line
1 of the listing) aims to find a bucket given the array key. The
array key is a string, so we definitely should not be dealing

with a packed hash table. The packed hash table is only used
for that particular case of continuous numeric keys beginning
with zero.

Line 9 includes a Boolean NOT, a bitwise AND, and a
hidden bitwise left shift. It’s a typical pattern throughout the
source code, so let’s dive down that rabbit hole.

Flags
The HT_FLAGS macro is near line 43 of Zend/zend_hash.h.

#define HASH_FLAG_CONSISTENCY ((1<<0) | (1<<1))
#define HASH_FLAG_PACKED (1<<2)
#define HASH_FLAG_UNINITIALIZED (1<<3)
#define HASH_FLAG_STATIC_KEYS (1<<4) /* long and interned strings */
#define HASH_FLAG_HAS_EMPTY_IND (1<<5)
#define HASH_FLAG_ALLOW_COW_VIOLATION (1<<6)

#define HT_FLAGS(ht) (ht)->u.flags

We know from the function signature (listing 1 line 1) that
ht is a pointer of type HashTable. The next listing to consider
is from Zend/zend_types.h near line 250.

Well, now. We have quite a rabbit hole. Again, this is typical.
As you learn the code base, you’ll be chasing down one topic
after another. The style of code, though, is consistent—and
that’s the point. As you come to recognize the patterns, terse
as they are, you’ll recognize the code’s structure in those
patterns.

That’s the whole point of this month’s article: recognizing
and understanding those patterns. That’s your key to not
being intimidated by the terseness and opaqueness of the
code. Your comfort level, and your confidence level will
increase. Meanwhile, we have this rabbit hole to explore.

Listing 4 Zend/zend_types extract

 1. typedef struct _zend_array HashTable;
 2.
 3. struct _zend_array {
 4. zend_refcounted_h gc;
 5. union {
 6. struct {
 7. ZEND_ENDIAN_LOHI_4(
 8. zend_uchar flags,
 9. zend_uchar _unused,
10. zend_uchar nIteratorsCount,
11. zend_uchar _unused2)
12. } v;
13. uint32_t flags;
14. } u;
15. uint32_t nTableMask;
16. Bucket *arData;
17. uint32_t nNumUsed;
18. uint32_t nNumOfElements;
19. uint32_t nTableSize;
20. uint32_t nInternalPointer;
21. zend_long nNextFreeElement;
22. dtor_func_t pDestructor;
23. };

Sam
ple

phparch.com

40 \ April 2019 \ www.phparch.com

Patterns in the Code
Internal Apparatus

Line 1 says that HashTable is a
synonym for _zend_array. I’m guessing
a lot of other things are also synonyms
for _zend_array. No doubt that’s why
the typedef and the struct are declared
separately.

We only care about u.flags, but let’s
take a peek at some other things while
we’re here. gc stands for “garbage
collection.” It includes reference counts.

“Endian” is a macro allowing for the fact
that different computers have different
endianness10. Some computers store
stuff in memory front-to-back, and
other computers store stuff inside-out
and backward. The ZEND_ENDIAN macros
ensure that things get laid-out in
memory consistently across various
architectures.

In C, a union is what you’d expect.
Fields v and flags are accessed at the
same memory location. Remember, in
C, a variable (or field) is just a pointer
to a memory location. C is perfectly
happy to treat those 32 bits as a whole
set of flags, or something with an “itera-
tors count” stuffed in the middle. If you
want the 8-bit nIteratorsCount, access it
as u.v.nIteratorsCount. If you want the
32 bits of flags, access them as u.flags.

Note the rest of the fields (other than
arData) are plain values, not pointers.
The plain value might be a pointer, such
as pDestructor, but that’s the program-
mer’s issue and not ours at the moment.
arData will point to that slab of

memory we’ve been describing. For
bucket n, the memory offset is n times
sizeof(Bucket) in bytes. arData plus that
memory offset is a pointer to bucket
n. As we saw last month, that slab of
memory also contains hash results at
a negative offset. arData actually points
into the middle of that slab of memory.

HASH_FLAG_PACKED is (1<<2) which is 4.
Our FLAGS macros are dealing with bit
fields packed into a single variable. We
extract the single flag with the bitwise
AND (&). We test for zero/nonzero as
true/false. The NOT operator negates
the result.

Why do we use (1<<2) instead of just
saying 4? This operation is common

10	 endianness:
https://en.wikipedia.org/wiki/Endianness

with bit fields all defined in the same
variable. The number is the bit number
being used. We can see at a glance
that bits 0..6 (counting the rightmost,
least-significant, bit as bit 0) are in use.
If someone needed to define another bit
field, clearly (1<<7) is the next available
field.

Isn’t specifying the left shift less effi-
cient than just specifying the value 1, 2,
4, 8, and so on? No, it isn’t. The compiler
does the calculation at compile time. It
performs the substitution for us. It’s
better to do it this way for readability’s
sake.

When we’re dealing with, say, 24 bits,
it’s easy to make a mistake. Which bit is
131072? What if we accidentally wrote
it as 131272? Would a reviewer catch
that? Using hexadecimal might avoid
that problem. 0x40000 has only one bit
set, but which bit, counting from zero?
We’ve been talking about bit 16, 17, 18—
which bit did we mean? In the context
of a sequence of bit-flag definitions,
(1<<17) makes sense—once we recog-
nize and understand the pattern.

Finally, take a look at listing 1 line
18, HT_FLAGS(ht) &= ~HASH_FLAG_STATIC_
KEYS;. We know from the header file
HASH_FLAG_STATIC_KEYS is (1<<4), which
is 16, but let’s call it bit 4. The ~ operator
works just like PHP. Flip all the bits. All
bits that are 1 become 0, and all that are
0 become 1. Therefore ~16 means that
all bits except bit 4 are set to 1.

“Anything” ANDed with 1 is the
same “anything.” In this case ht->u.flags
ANDed with ~16 leaves all of the flags
intact except bit 4. Anything ANDed
with 0 is 0. Therefore what this is doing
is clearing bit 4 to zero and leaving
everything else as-is. We don’t know, at
this point, why we’re clearing the static
keys flag, but we can now recognize the
pattern for clearing a bit-flag. When
you see this pattern, the code is clearing
a flag (or a subfield within a field).

The opposite pattern for setting a bit
flag looks like this:

HT_FLAGS(ht) |= HASH_FLAG_STATIC_KEYS;

Any value ORed with 0 is the same
value. Anything ORed with 1 is 1. So
we’re leaving the other flags as-is and
setting the static keys flag to 1.

The above line of code appears to
have a function call as the left side of an
assignment statement. That wouldn’t be
legal PHP code, and it’s not legal C code
either. We’re looking at a macro evalu-
ated at compile time. The fact that it’s all
upper case is our clue that it’s a macro.
A macro is purely a text substitution.

After substitution, the C compiler
will see:

(ht)->u.flags |= (1<<4);

We can now see the line of perfectly
legal C code. We can see what it does.
On the other hand, now that we know
the pattern, the “macro” form more
clearly expresses the intent. The macros
aim to show us what the code is trying
to accomplish.

Summary and Looking Ahead
We learned about how the C code

used macros, structs, and typedefs. PHP
(written in C) often stores information
(flags) as bit fields. We saw examples
of the macros examining, setting, and
clearing those bit fields.

We learned more of the C code
implementing hash tables as we focused
on learning programming patterns
common throughout the C code.

Next month we’ll begin looking
at memory management. We’ll first
see how stacks and heaps work with
runtime C code. We’ll then be prepared
to learn how that C code handles vari-
ables and stack frames for PHP.

 Ed Barnard had a front-row seat when the Morris Worm
took down the Internet, November 1988. He was teaching
CRAY-1 supercomputer operating system internals to analysts
as they were being directly hit by the Worm. It was a busy
week! Ed continues to indulge his interests in computer
security and teaching software concepts to others. @ewbarnard

Sam
ple

phparch.com
https://en.wikipedia.org/wiki/Endianness
https://twitter.com/ewbarnard

http://phpa.me/mag_subscribe

	Patterns in the Code
	Edward Barnard

