
www.phparch.com

Serverless, ReactPHP,
and Expanding Frontiers

Education Station:
Data Structures, Part One

Community Corner:
Philosophy and Burnout,
Part One

Internal Apparatus:
Memory Abstractions

Security Corner:
Access Control and
Authorization

finally{}:
The State of PHP

ALSO INSIDE

Deploying ReactPHP Applications

Serverless PHP With Bref, Part One

MySQL 8.0 Geographic Information
System or How Did I Get to This Point?

Department of Breaking Changes:
Launching PHP 7 in a Highly Available Web World

May 2019
Volume 18 - Issue 5

Oscar
Free Sample

Data is more valuable than oil.
Data is the lifeblood of more and more companies every day.

In every enterprise, data comes from multiple inputs and must be harnessed and combined

to become actionable. If you don’t tame and act on your data streams, you lose value as it

�ows through your systems and you miss opportunities. The decisions for dealing with your

data go beyond how you store, search, and share it with others throughout your

organization.

Join us online for the next Day Camp 4 Developers and learn to tame your data. Turn it from

a wandering stream to a powerful tool that can inform your enterprise.

daycamp4developers.com

Tickets include attendance to the live event as well as access to download the videos within seven days after the event.

May 31, 2019 | 9:00 AM - 3:00 PM CDT | Online

DaTA
M ay 3 1 st O N L I N E•

10 \ May 2019 \ www.phparch.com

FEATURE

Serverless PHP With Bref, Part One
Rob Allen

 In recent years, a different way to build applications has arisen called serverless
computing. This term is not a good name; I’m reminded of the adage that there
are two hard problems in programming: naming things, cache invalidation, and
off-by-one errors. Serverless computing as a name implies no servers, but there
are servers—you don’t think about them though. A better way to think about it is
that the servers and the management of them are abstracted away and the provider
manages the allocation of resources, not the application architect.

Amazon Lambda1 arguably started
Serverless computing. It is a system
where your code runs on demand and is
not even in memory if it’s not running.
We call this functions as a service (FaaS).
Modular code executes in response to
an event, and so different parts of our
application can be scaled independently
without any additional effort on our
part. The main advantages are that we
spend more our time concentrating on
the core of an application that brings
value and far less worrying about how
to run and scale it. There’s also a lovely
side-benefit in that you only pay when
your code is running, so your costs are
proportional to usage. As FaaS encour-
ages building small independent units
of functionality, you also get modular
applications.

Of course, there were also disadvan-
tages. It is harder to reason about an
application which is spread over many
separate functions and services. It’s
also harder to debug and keep track of
which functions are deployed where.
FaaS and serverless are not a solution to
every problem but are a good solution
for a large number of use-cases.

In this article, I’m going to walk
through how to use Lambda with PHP
to execute a function. In part two, I will
build a static website hosted on S3, with
a CDN updated via a Lambda function.
To do this, we use Bref2. Created by
Matthieu Napoli, Bref contains all the

1 Amazon Lambda:
https://aws.amazon.com/lambda/
2 Bref: https://bref.sh

functionality required to deploy PHP
functions into Lambda in a simple, clean
and easy manner. It provides runtimes
for PHP 7.2 and 7.3. It is closely tied
to Amazon, so if you’re interested in
running PHP in say IBM Cloud Func-
tions, you would use a different tool,
such as Serverless Framework3.

Let’s get started by setting up AWS.

Setting Up AWS
Let’s start by creating a single Lambda

Hello World application. First, we have
to start with our prerequisites: the
AWS command line tools and an AWS
account. This involves more steps than
you would initially think because AWS
has a robust and complete permissions
system called IAM4 that controls user
access, so in addition to installing the
command line tools, we also need to set
up a user with enough permissions to
create our application.

There are two command line tools
we need: aws and sam. As you can guess,
from its name, aws is the command
line tool which allows access to all
of the AWS system. The other tool,
sam is the way we interact with AWS
Serverless Application Model (SAM)
system which is used by Bref. To install
the aws command line tool, head to
https://aws.amazon.com/cli/ and follow
the instructions5; for sam.

3 Serverless Framework:
https://serverless.com
4 IAM: https://aws.amazon.com/iam/
5 the instructions:
https://phpa.me/aws-serverless-sam

Now we have the tools we need to set
up credentials so SAM can create and
manage the application resources for us.
If you don’t have an AWS account, head
to https://console.aws.amazon.com and
create one. The command line tools
require access keys. To do this, we need
a new user as we don’t want to use our
master user. This process is well-de-
scribed in the Serverless Framework
documentation6.

In summary:
1. Create or log into your AWS

account and go to the Identity and
Access Management (IAM) page.

2. Click on Users then Add User and
enter the username bref-agent.

3. For the Access type, select Program-
matic access only as this user needs
CLI and API access, but not web
console access.

4. Click Next: Permissions to set
permissions for our user.

5. Click Attach existing policies
directly and then Create Policy.

6. In the new tab that opens, click
JSON and paste in the JSON from
Listing 1.

7. Click Review Policy and assign it a
name of “bref-agent-policy,” then
click Create Policy, and close the
tab to return to the tab where we
are adding our user.

8. Click the refresh button (two
arrows in a circle) on the right to
refresh the list of available policies

6 Serverless Framework documentation:
https://phpa.me/aws-serverless-credentials

phparch.com
https://aws.amazon.com/lambda/
https://bref.sh
https://aws.amazon.com/cli/
https://serverless.com
https://aws.amazon.com/iam/
https://phpa.me/aws-serverless-sam
https://console.aws.amazon.com
https://phpa.me/aws-serverless-credentials

 www.phparch.com \ May 2019 \ 11

Serverless PHP With Bref, Part One

9. Find bref-agent-policy in the list, check the box next to it,
and click Next: Tags.

10. We don’t want to add any tags, so click Next: Review, and
then Create user.

Listing 1 is the set of permissions we give to the user that
creates our serverless application, so it has administrative
permissions to create S3 buckets, DynamoDB tables, Cloud-
Formation stacks, IAM policies, and so on. It is a fairly open
policy so for production use; you may want to lock it down
some more with specific permissions for each group.

We now have a new user called bref-agent. Note the Access
key ID and the Secret access key.

Configure the AWS CLI
The easiest way to configure the aws and sam tools is to run

aws configure.

$ aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/EXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: json

Use your Access key ID and the Secret access key at the
prompts, set your region to us-east-1, and use JSON for your
output format.

Now that we have AWS set up, we can write our first
Lambda function.

Hello World With Bref
To create a Lambda function using Bref, we start with a new

directory and install Bref into it:

$ mkdir bref-hello-world
$ cd bref-hello-world
$ composer require mnapoli/bref

These commands installed the Bref code into the vendor/
folder, so we can go ahead a create the project now. You’ll see
something like Output 1

Bref supports three different kinds of serverless projects
depending on your needs. For our case, we want a standard
Lambda function, so we select the [0] PHP function option,
and then Bref creates our files. To learn more about the
options, see the Bref documentation on runtimes7

What Files Do We Have?
bref init has created two files of interest: template.yaml

and index.php. Starting with template.yaml, we have the SAM
template which is the configuration file which defines our
application and in our case contains the definition of our first
Lambda function (see Listing 2).

7 runtimes: https://bref.sh/docs/runtimes/

Listing 1

 1. {
 2. "Statement": [
 3. {
 4. "Action": [
 5. "apigateway:*",
 6. "cloudformation:*",
 7. "dynamodb:*",
 8. "events:*",
 9. "iam:*",
10. "lambda:*",
11. "logs:*",
12. "s3:*",
13. "sns:*",
14. "states:*"
15.],
16. "Effect": "Allow",
17. "Resource": "*"
18. }
19.],
20. "Version": "2012-10-17"
21. }

Output 1

 1. $ vendor/bin/bref inito
 2.

 3. What kind of lambda do you want to create? (You will be
 4. able to add more functions later by editing
 5. `template.yaml`) [PHP function]:
 6. [0] PHP function
 7. [1] HTTP application
 8. [2] Console application
 9. > 0
10.

11. Creating template.yaml
12. Creating index.php
13.
14.

15. [OK] Project initialized and ready to test or deploy.

Listing 2

 1. AWSTemplateFormatVersion: '2010-09-09'
 2. Transform: AWS::Serverless-2016-10-31
 3. Description: ''
 4.
 5. Resources:
 6. MyFunction:
 7. Type: AWS::Serverless::Function
 8. Properties:
 9. FunctionName: 'my-function'
10. Description: ''
11. CodeUri: .
12. Handler: index.php
13. Timeout: 10 # Timeout in seconds
14. MemorySize: 1024 # Relates to pricing and CPU power
15. Runtime: provided
16. Layers:
17. - 'arn:aws:lambda:us-east-1:209497400698:layer:php-73:1'

phparch.com
https://bref.sh/docs/runtimes/

12 \ May 2019 \ www.phparch.com

Serverless PHP With Bref, Part One

The template file consists of a small header and the Resources
section which holds our function. Its resource name isMyFunc-
tion and it has a type of AWS::Serverless::Function. To define
our function’s properties, we provide a set of configuration
information under the Properties key. The table below shows
the key properties for a Lambda function.

Property name Value Notes

FunctionName my-function

The name of the Lambda
function. Note that this is
not the same same name
as the CloudFormation
resource name (MyFunction).

CodeUri . The path to the source code.

Handler index.php
The PHP file containing the
lambda function the Bref
runtime layer will invoke.

Runtime provided

The language runtime that
will invoke the function. For
Bref, this isprovidedas we
provide the runtime layer to
Lambda.

Layers A List of layers

By default this is Bref ’s PHP
7.3 runtime layer from the
us-east-1 region. See this list
https://runtimes.bref.sh for
the correct ARNs for other
regions and PHP versions.

As you can see, our template defines a single resource: a
Lambda function called my-function that lives in index.php
within the current directory. Let’s take a look at index.php:

<?php declare(strict_types=1);

require __DIR__ . '/vendor/autoload.php';

lambda(function (array $event) {
 return 'Hello ' . ($event['name'] ?? 'world');
});

A Bref Lambda function is defined as a closure that’s an
argument to Bref ’s lambda() function. It takes an array $event
which contains the input data to the function, and you can
return whatever you want as long as it’s JSON serializable.
This $event contains information about the request which
triggered your lambda function8. In this case, we return the
string Hello followed by the name if it exists, otherwise world.

Deploying Our Function
If you used the us-east-1 region for your configuration as

recommended, then we can go ahead and deploy our func-
tion immediately.

8 lambda function: https://phpa.me/aws-lambda-other

Deployment is done using the sam tool; however, first, we
need to create an S3 bucket to store the CloudFormation
stack in.

$ aws s3 mb s3://helloworld-rka-brefapp

You can name your bucket anything you like, but it must
be globally unique. I like to postfix with my initials and the
reason for the bucket to ensure it’s unique and that I can
remember what it’s for.

There are two steps to deploying our application. First, we
upload the code and generate a CloudFormation stack into
our S3 bucket and then we deploy the stack:

$ sam package --output-template-file .stack.yaml \
 --s3-bucket helloworld-rka-brefapp
$ sam deploy --template-file .stack.yaml \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-rka-brefapp
$ rm .stack.yaml

The output template file (.stack.yaml) is an intermediate
CloudFormation file and isn’t needed after deploy. The stack
name must be unique within the AWS region, so I name it the
same as my S3 bucket.

Running Our Function
To invoke our function, we can use bref.

$ vendor/bin/bref invoke my-function
 START RequestId: 4fa0f083-c02f-4b35-a23f-1e5e35d91af5
 Version: $LATEST
 END RequestId: 4fa0f083-c02f-4b35-a23f-1e5e35d91af5
 REPORT RequestId: 4fa0f083-c02f-4b35-a23f-1e5e35d91af5

 Duration: 24.15 ms Billed Duration: 100 ms
 Memory Size: 1024 MB Max Memory Used: 68 MB

 "Hello world"

To send data to our function we can pass in a JSON object
to the--eventparameter like this:

$ vendor/bin/bref invoke my-function \
 --event '{"name": "Rob"}'

Which results in the output of Hello Rob.

Tidying Up
We can delete the application using:

aws cloudformation delete-stack \
 --stack-name helloworld-rka-brefapp

We also need to delete the S3 bucket with:

aws s3 rb s3://helloworld-rka-brefapp

phparch.com
https://runtimes.bref.sh
https://phpa.me/aws-lambda-other

 www.phparch.com \ May 2019 \ 13

Serverless PHP With Bref, Part One

Other Ways to Invoke Our
Function

Invoking a function with the
command line or an authenticated
AWS API call is not the easiest way to
execute our code; usually, you want
it to respond to an event of some
sort. Lambda supports many different
event sources, such as a queue, data-
base change, S3 bucket change, HTTP
request or a cron-type schedule. For
your function to respond to an event,
you need to update the template defini-
tion with the event you want to respond
to. The list of event source types can be
found in the SAM documentation9.

To schedule our function at regular
intervals, we add a Schedule event to our
function in template.yaml like Listing 4.

We add a new property called events
and can then add as many event sources
as we want. In this case, we create one
event source, MySchedule which has
a rate of one minute. The schedule
property may be either a cron or a rate
expression as explained in Schedule
Expressions for Rules10 in the Cloud-
Watch documentation.

We run the sam package and sam
deploy commands again to deploy the
change to Lambda and now our func-
tion is executing once every minute.

To prove our function is executing
once per minute, we can look in the
CloudWatch logs. You can do this via
the AWS console on the web or via
the command line using the following
command to see the Lambda function
execution happening every minute.

9 SAM documentation:
https://phpa.me/sam-event-types
10 Schedule Expressions for Rules:
https://phpa.me/cloudwatch-events-rules
11 Nineteen Feet Limited: http://19ft.com
12 akrabat.com: https://akrabat.com

$ sam logs --name my-function --tail

Don’t forget to remove the
MySchedule event and redeploy to turn
it off again.

Conclusion
I’ve given you a taste for writing

serverless functions with PHP. It is a
powerful paradigm, and with Bref, we
can use our PHP easily on AWS Lambda.
As PHP developers, we too can benefit
from this environment where our code
executes in response to an event, auto-
matically scaled as required and best

of all, we only pay when our code runs.
There are many situations where this
paradigm can be used to add function-
ality to an existing application or to
write a brand new application such as
an API.

As serverless applications tend to
utilize other services, in part two of this
series, I look at how we can write a real
application which integrates a Lambda
function with AWS S3 cloud storage
and the CloudFront CDN in order
create a static website updated with new
images from Flickr.

 Rob Allen is a software consultant and developer with
many years experience and writes code in PHP, Python, Swift
and other interesting languages. He’s led Slim Framework’s
development team and contributes to rst2pdf, Apache Open-
Whisk and other open source projects. Rob is a published
author and based in the UK where he runs Nineteen Feet
Limited11, focusing on API development, training and consul-
tancy. In his spare time, Rob blogs at akrabat.com12 and can
often be seen with a camera in his hand. @akrabat

Listing 4

 1. Resources:
 2. MyFunction:
 3. Type: AWS::Serverless::Function
 4. Properties:
 5. FunctionName: 'my-function'
 6. # ...
 7. Events:
 8. MySchedule:
 9. Type: Schedule
10. Properties:
11. Schedule: rate(1 minute)

Related Reading

• Moving a Monolith to AWS by Keanan Koppenhaver. May 2018.
https://phparch.com/article/moving-a-monolith-to-aws/

• Community Corner: What’s the Fuss About Serverless?
by James Titcumb. April 2018.
https://phpa.me/april-2018-serverless

phparch.com
https://phpa.me/sam-event-types
https://phpa.me/cloudwatch-events-rules
http://19ft.com
https://akrabat.com
https://twitter.com/akrabat
https://phparch.com/article/moving-a-monolith-to-aws/
https://phpa.me/april-2018-serverless

http://phpa.me/mag_subscribe

	Serverless PHP With Bref, Part One
	Rob Allen

