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Memoization
Edward Barnard

Memoization is another form of memory use. I see it regularly used for improving application 
performance, but it’s also used to improve compiler performance. To learn the concept, we’ll use a 
PHP project with database tables, then look at other ways to use the technique.

1	 Samantha Quiñones: 
https://twitter.com/ieatkillerbees
2	 PDO: https://php.net/book.pdo
3	 this benchmark: 
https://php.net/language.types.string#120160

“Memoization” is a strange word. It 
names a technique for saving the result 
of expensive function calls. Where 
additional calls to the same function 
with the same input are guaranteed to 
produce the same output, we can save 
that output (we’re making a “memo,” 
which is where the name comes from). 
The next time we make that call, we first 
check for the saved result of a previous 
calculation (with the same inputs).

For example, if we are reading the 
exact same database row, assuming the 
row has not been updated, we should 
receive the same result every time. That 
operation is, therefore, a candidate for 
memoization.

Last month we looked at memory 
abstractions—concepts we use all the 
time without really thinking about 
them. We also introduced the Swiss 
Adventure project as an exercise in 
memory management but leaving the 
details for this month.

At php[tek] 2019, Samantha 
Quiñones1, in Caching on the Bleeding 
Edge for the Advanced PHP track, 
explained memoization. It’s an 
important technique you’ve likely used 
yourself. Compilers use the technique 
as well—and that’s why we’re here.

I prefer to work from the known 
to the unknown (when I can). That is, 
take something familiar as my starting 
point, before working into unfamiliar 
territory. I have a project that I use for 
teaching PHP’s PDO2 and, specifically, 

constructing MySQL prepared state-
ments.

My Prepared Statements Project 
uses memoization as a performance 
enhancement—we’ll focus on where 
memoization fits into that picture. We’ll 
then see other applications of memoiza-
tion and related techniques, including 
in the original Swiss Adventure.

Performance
Our project begins with a benchmark 

measuring the performance of various 
file-import techniques. See Figure 1. It’s 
important to gather real information 
before considering optimization. As 
we’ll see below, performance optimiza-
tions should only be considered when 
proven to be necessary.

Performance improvements always 
come at a cost. Sometimes it’s the “time 
versus space” trade-off as we learned 
last month. The more we make use of 
faster memory such as L1 processor 
cache, the faster our software can run. 
Other times, as here, performance 
improvements come from choosing 

different programming techniques. At 
the cost of greater development time, 
we improve run time.

A classic example is using single 'a 
string' versus double "another string" 
quotes around a PHP string. Which one 
is faster? At what point would it make 
a difference? Based on this benchmark3, 
we’d need more than 1,500 string 
manipulations to add a single milli-
second to the page load time with PHP 
7.0.

If we’re doing 1,500 string manip-
ulations during a web page load, we 
should consider different programming 
techniques before we worry about 
prematurely optimizing single and 
double quotes!

For the record, I use both single and 
double quotes. I try to make the code as 
readable as possible to the likely audi-
ence. I use double quotes for simple 
variable interpolation, and generally, 
use single quotes otherwise (to signal 
that there is no variable interpolation 
involved).

Figure 1. Benchmark 100,00 Row InsertsSam
ple
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Donald Knuth writes4:

Programmers waste enormous times thinking about, 
or worrying about, the speed of noncritical parts of their 
programs, and these attempts at efficiency actually have a 
strong negative impact when debugging and maintenance 
are considered. We should forget about small efficiencies, 
say about 97% of the time: premature optimization is the 
root of all evil. Yet we should not pass up our opportuni-
ties in that critical 3%.

Meanwhile, the law of the instrument5 warns of over-re-
liance on a specific skill. Abraham Maslow explained, “I 
suppose it is tempting, if the only tool you have is a hammer, 
to treat everything as if it were a nail.”

In this case, we’re looking at various ways to import 100,000 
rows from a file and insert them into a database. From the 
benchmark, we can see the two results on the left, “Model 
Save” and “Model Save Many,” are an order of magnitude 
slower than the two middle results, and two orders of magni-
tude slower than the right-most result.

However, we don’t normally insert 100,000 rows into a data-
base on a normal web page load! So, we definitely don’t need 
to convert normal web applications to use the faster tech-
niques examined with this benchmark. We have a hammer, 
but not everything is a nail, so to speak.

On the other hand, many web applications do need to 
perform file imports from time to time. When the file import 
is taking too much time, impacting normal operations, that’s 
the time to consider some type of optimization.

Let’s begin optimizing by looking at the table design. The 
import file, in CSV format (comma-separated values), looks 
like Figure 2. The first row contains the column names.

We’re looking at GPS data exported from my Garmin 
hand-held GPS device used for hiking. We imported 100,000 
rows of data for the benchmark. The file-import details don’t 
matter; we’re focused on efficiency and memoization.

Note the first column, “motion,” contains the same value 
for all rows shown. We have duplicated content—providing 
an opportunity for improving efficiency.

The sixth column, “nearest,” shows the nearest known 
waypoint for that specific location. All rows again have dupli-
cate content.

We can normalize6 our database table. That is, we can 
refactor the table structure. We’ll extract “motion” to be placed 
in its own table, and we’ll extract “nearest” to become its own 
table. The “motion” table only needs three rows because there 
are only three possible motion values in the entire import file.

4	 writes: https://phpa.me/wikiquote-knuth-art
5	 law of the instrument: https://phpa.me/wikip-law-instrument
6	 normalize: https://phpa.me/wikip-3rd-normal

By converting the text column (averaging about 6 bytes per 
row) to a pointer to the motion table (requiring one byte per 
row), we’ve saved a few bytes of storage per row. Saving half a 
megabyte (5 bytes saved times 100,000 rows) doesn’t, in itself, 
justify the added complexity of using multiple tables. But with 
billions of rows, backup copies, and multiple replications, and 
so on, the savings can add up.

Our new motion table looks like this:

CREATE TABLE `motion` ( 
  `id` tinyint(3) unsigned NOT NULL AUTO_INCREMENT, 
  `name` varchar(255) NOT NULL DEFAULT '', 
  PRIMARY KEY (`id`), 
  UNIQUE KEY `name` (`name`) 
) ENGINE=InnoDB DEFAULT CHARSET=utf8

Our nearest-waypoint table is similar:

CREATE TABLE `waypoint` ( 
  `id` smallint(5) unsigned NOT NULL AUTO_INCREMENT, 
  `name` varchar(255) NOT NULL DEFAULT '', 
  PRIMARY KEY (`id`), 
  UNIQUE KEY `name` (`name`) 
) ENGINE=InnoDB DEFAULT CHARSET=utf8

So far, we haven’t seen anything unusual. We’re refactoring 
our import table to slightly improve row-insert performance. 
Fewer bytes per row get sent to the main table; inserts to the 
other two tables are relatively rare as compared to the main 
table, or are they?

One approach is to insert the same value over and over again 
to motion or waypoint. The unique-key constraint prevents 
that. We could read the same value over and over again, to 
see if it’s already there, and use its row ID in the main table. 
Or, we could read it once, and remember the answer (the row 
ID). That’s where memoization comes in. See Figure 3.

Figure 2. CSV File

Figure 3. Lookup Utility FlowSam
ple
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Listing 1. Memoization Utility

 1. <?php
 2. 

 3. namespace App\Util;
 4. 

 5. use Cake\Database\Connection;
 6. use Cake\Database\StatementInterface;
 7. 

 8. final class LookupUtil
 9. {
10.    /** @var int Maximum cached IDs */
11.    private static $cacheLimit = 200;
12. 

13.    /** @var array One singleton per table */
14.    private static $instances = [];
15. 

16.    /** @var Connection */
17.    private $connection;
18. 

19.    /** @var StatementInterface */
20.    private $query;
21. 

22.    /** @var StatementInterface */
23.    private $insert;
24. 

25.    /** @var string Table name */
26.    private $table;
27. 

28.    /** @var array Cache of IDs given name */
29.    private $cache = [];
30. 

31.    private function __construct(Connection $connection,
32.                                 $table,
33.                                 array $dependencies) {
34.       $this->connection = $connection;
35.       $this->table = $table;
36.       if (count($dependencies)) {
37.          $this->injectDependencies($dependencies);
38.       }
39.       $this->prepareStatements();
40.    }
41. 

42.    /**
43.     * Testing support
44.     *
45.     * @param array $dependencies
46.     * @return void
47.     */
48.    private function injectDependencies(array $dependencies) {
49.       foreach ($dependencies as $key => $value) {
50.          if (property_exists(static::class, $key)) {
51.             $this->$key = $value;
52.          }
53.       }
54.    }
55. 

56.    private function prepareStatements() {
57.       if (!$this->query) {
58.          /** @noinspection SqlResolve */
59.          $sql
60.             = 'SELECT id FROM prepared_statements.' .
61.             $this->table . ' WHERE ̀ namè  = ?';

62.          $this->query = $this->connection->prepare($sql);
63.       }
64.       if (!$this->insert) {
65.          /** @noinspection SqlResolve */
66.          $sql
67.             = 'INSERT INTO prepared_statements.' .
68.             $this->table . ' (`name`) VALUES (?)';
69.          $this->insert = $this->connection->prepare($sql);
70.       }
71.    }
72. 

73.    public static function lookup(Connection $connection,
74.                                  $table, $value) {
75.       $instance = static::getInstance($connection, $table);
76.       return array_key_exists($value, $instance->cache) ?
77.          $instance->cache[$value] :
78.          $instance->runLookup($value);
79.    }
80. 

81.    /**
82.     * @param Connection $connection
83.     * @param string $table
84.     * @param array $dependencies
85.     * @return LookupUtil
86.     */
87.    public static function getInstance(Connection $connection,
88.                                       $table,
89

.                                       array $dependencies = []) {
90.       if (!array_key_exists($table, static::$instances)) {
91.          static::$instances[$table]
92.             = new static($connection, $table, $dependencies);
93.       }
94.       return static::$instances[$table];
95.    }
96. 

97.    private function runLookup($value) {
98.       if (count($this->cache) >= static::$cacheLimit) {
99.          $this->cache
100.             = []; // Cache got too big; clear and start over
101.       }
102.       if (!$this->query) {
103.          // Should only happen when developing unit tests
104.          throw new \InvalidArgumentException('No query for ' .
105.             $this->table);
106.       }
107.       $parms = [substr($value, 0, 255)];
108.       $this->query->execute($parms);
109.       $row = $this->query->fetch('assoc');
110.       if (is_array($row) && array_key_exists('id', $row)) {
111.          $id = (int)$row['id'];
112.       } else {
113.          $this->insert->execute($parms);
114.          $id = (int)$this->insert->lastInsertId();
115.       }
116.       $this->cache[$value] = $id;
117.       return $id;
118.    }
119. }

Sam
ple

phparch.com


40  \  June 2019   \  www.phparch.com

Memoization
Internal Apparatus

Note that both tables have a column name. Both tables have 
identical structure, except the primary key uses a small-
er-range data type for motion. Our memoization7 technique is 
a form of read-through caching8.

Our cache is a simple key-value array. The key is the name 
column from our table, and the key’s value is the id column 
for that table row. We maintain one cache array for each table.
1.	 If our array (the cache) contains the target value (“Drive” 

for the motion table, or “Marshall House” for the waypoint 
table), return the row ID for that target value.

2.	 Otherwise, our value is not in cache. Attempt to read that 
row from the database.

3.	 If we received a result from the database read, we 
perform “read-through caching.” That is, we store the 
just-read target value in our cache, so we remember that 
row ID. That’s called “memoizing” the value. If we need 
to look up this same target value in the future, it will be 
available to us from the cache (as Step 1 above) and skips 
querying the database. Return the now-cached row ID 
for that target value.

4.	 However, if we did not receive a result from the database 
read, we need to add this target value to the table. Do 
the row insert and note the last insert ID. Memoize our 
target value by saving the target value, and the last insert 
ID, in our cache. Return the now-cached row ID for that 
target value.

The PHP implementation is Listing 1.
This utility uses an array of Singletons, with one singleton 

per table. The Singleton is generally considered an anti-pat-
tern, because it’s a way of creating global state. Software 
depending on global state becomes more difficult to test—
and thus the singleton is generally discouraged.

However, there is one place we accept singletons—for 
resource connections. We use a single connection for a 
database, for example. Our LookupUtil class does something 
similar. Each of its singletons is memoizing the contents of 
a specific table. The singleton makes sense—but that doesn’t 
make it easier to test!

This utility allows arbitrary depen-
dency injection for testing purposes. 
The class constructor __construct() is 
private. Its dependency array comes 
from static method getInstance(), 
which is public. We can, therefore, 
write unit tests which pre-fill the 
cache, allowing us to exercise all 
code paths. Unit tests are online at 
https://phpa.me/ewb-cakefest17-tests. 
The cache test looks like Listing 2.

7	 memoization: 
https://phpa.me/wikip-cache-memo
8	 read-through caching:  
https://phpa.me/oracle-readthrough-cache

That’s how memoization works. It’s a way of improving 
performance by caching results inside our program code. It 
comes with a cost—added complexity. It’s one more place 
where things can go wrong. We could, for example, run out of 
memory by trying to memoize a billion result rows. Listing 1 
solves this by emptying the cache once it reaches 200 values. 
(See the top of function runLookup() near line 86.)

Recursion
Wikipedia9 describes how a memoized function remem-

bers the results corresponding to some specific set of inputs. 
If we know a function will return the same result for given 
inputs, we can memoize that result, creating some sort of 
cache that, given this set of inputs, we can return the previ-
ously-determined result.

Note that this is the same concept as our PHP utility. Wiki-
pedia uses the example of recursively computing a factorial 
number:

function factorial (n is a non-negative integer) 
    if n is 0 then 
        return 1 [by the convention that 0! = 1] 
    else 
        return factorial(n – 1) times n [recursively invoke 
                                        factorial with the  
                                        parameter 1 less than n] 
    end if 
end function

The problem with the above algorithm is its performance. 
It’s costly in time, and costly in space. The recursive nature 
means that for computing n factorial, we have n stack frames 
comprising the calculation in progress.

Calling a function, in PHP, is expensive relative to not 
calling a function. The stack frame controlling the function 
call must be allocated and initialized. However, that obser-
vation (that function calls are expensive) is not an excuse 
to indulge in premature optimization! It’s far better to write 
well-structured, readable and maintainable, code. Only opti-
mize when you have evidence proving it’s necessary!

9	 Wikipedia: https://phpa.me/wikip-memoization

Listing 2

 1. public function testAsFixture() {
 2.    $table = 'fest_events';
 3.    $cache = ['cache' => ['Event Two' => 2, 'Event Three' => 3]];
 4.    LookupUtil::getInstance($this->connection, $table, $cache);
 5.    static::assertSame(
 6.       2, LookupUtil::lookup($this->connection, $table, 'Event Two')
 7.    );
 8.    static::assertSame(
 9.       3, LookupUtil::lookup($this->connection, $table, 'Event Three')
10.    );
11. }

Sam
ple
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To calculate six factorial, we must:
1.	 Multiply 6 by five-factorial,
2.	 Multiply 5 by four-factorial to provide five-factorial,
3.	 Multiply 4 by three-factorial to provide four-factorial,
4.	 Multiply 3 by two-factorial to provide three-factorial,
5.	 Multiply 2 by one-factorial to provide two-factorial,
6.	 Multiply 1 by zero-factorial to provide one-factorial,
7.	 Provide one as zero-factorial,
8.	 Pop the results back up the stack, ultimately returning 

six-factorial.
If, for some reason, we’re computing various factorial 

numbers, we could save a lot of time and space by memoizing 
each result the first time it’s computed. We call that amor-
tizing the calculation cost across multiple calculations.

In fact, we could even store pre-computed factorial values 
in a lookup table. That lookup table could be in memory, a 
database, or any other long-term storage. Such tables used 
to be published as print books. We had books for chemistry 
calculations, prime numbers, random numbers, even ocean 
navigation10.

The rainbow table11 is another application of this concept. 
It’s a precomputed table for cracking passwords. If we know 
the password-encrypting (hashing) algorithm, we could 
pre-compute the hash for a dictionary or other list of known 
passwords. Upon obtaining a list of “secure” but unsalted 
hashed passwords, we compare each hash to our rainbow 
table. Any time we find a match, we have obtained the plain-
text password without the computing expense beyond one 
lookup.

This, by the way, is why it’s important to add a varying salt 
to a password before hashing it. It defeats the rainbow-table 
attack. There are other possible attacks, to be sure, but the 
rainbow table is a great example of memoizing. Criminals 
can—and do—share rainbow tables.

“Memoizing” refers to short-term caching inside a function 
or method. However, the general concept can be imple-
mented for the long term, such as publishing the table in a 
book or sharing rainbow tables as files.

Compilers
Compilers, in general, use parsers. A parser attempts to 

recognize program statements and syntax. A given language 
token, such as a left parenthesis (, could indicate one of 
several different parts of the PHP language. It could be part 
of a function declaration, an array declaration, a function call, 
etc.

The parser, therefore, “runs down various rabbit holes” to 
create the correct syntax tree for our software. The recur-
sive descent down these rabbit holes can be assisted by 

10	 ocean navigation: https://phpa.me/wikip-practical-navigator
11	 rainbow table: https://phpa.me/wikip-rainbow-table

memoization12. Any rabbit hole that, given a set of inputs, 
always returns the same result, can be memoized, allowing 
the compiler to complete its parsing steps more quickly.

Tight Memory
Another example comes from Swiss Adventure—not the 

PHP project, but the original assembly-language code. The 
original code ran on a processor with only 128 Kbytes of 
memory available, and therefore the program could only 
have small pieces resident in local memory at a time.

However, Swiss Adventure has a large table of locations, 
place descriptions, navigation information from one location 
to the next, and so on. How does it all fit?

We use a similar technique, based on the available hard-
ware. In addition to the 128KB of local memory in the CPU, 
the processor had a large store of cache memory, called Buffer 
Memory or “MOS” in the code. “MOS” refers to a type of 
memory based on silicon Metal-Oxide-Semiconductor tech-
nology.

The code is online13. Here’s the technique for getting 
an adventure description into local memory so it can be 
displayed to our hapless adventurer.
1.	 Allocate eight words of space in Local Memory. In 

modern terms, we’d call that heap space.

         AA = D'8 
         GETMEM    AA,D1        .Allocate space for SW@ entry

The above code places the (decimal) value 8 into variable 
AA. We then call the memory allocator to provide us that 
much memory, placing the allocated memory address in 
variable D1.

My point in showing you the assembly code is that the 
language really doesn’t matter. So long as we understand the 
task we’re trying to accomplish, we can recognize its accom-
plishment in any programming language.

We’re all familiar with PHP syntax. PHP and JavaScript are 
both “C-like” languages, meaning statements, expressions, 
and general structure are similar to C. Thus reading the C 
compiler code, given our knowledge of PHP syntax, is rela-
tively easy. If we can follow the assembly code above, the PHP 
compiler will be easier!

The PHP compiler allocates space for PHP variables. The 
variables are called Zval entities, and we use emalloc to allo-
cate memory for them from the heap. It’s the same operation 
as the sample assembly code above.
2.	 We’re looking for the text with our description location 

in Buffer Memory. That’s the large cache memory. Once 
we locate that description, we copy the information into 
local memory.

12	 memoization: https://phpa.me/wikip-memoize-parsers
13	 online: https://phpa.me/swiss-adv-ioplm
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         BL = ML + AA           .Absolute Buffer Memory address 
         BU = BU+1,C#0 
         AA = 2 
         MOSR      BU,BL,D1,AA  .Read SW@ entry

Buffer Memory addresses are so big that we have to hold 
them in two variables (BL and BU, for Buffer Memory Lower 
and Buffer Memory Upper). Again, the exact syntax does not 
matter, but the principles do. We have two structures with 
differing word sizes. Eight units of local memory (allocated 
in step one) correspond to two units of Buffer Memory. So 
in reading buffer (MOS) memory with MOSR, we’re reading 
two units (variable AA), with the destination being our local 
memory address in variable D1 from step 1.

In fact, we’ve only read 16 bytes (two 64-bit words). That’s 
not enough for a full location description for an adventure 
game. What we actually read was a pointer to the text descrip-
tion. The assembly-language code then proceeds to allocate 
memory for the full text description, and read it into local 
memory.

We then display the description on the operator console 
and release the local memory. If we didn’t release the memory 
we’d have a memory leak—not a good thing!

The original Swiss Adventure is largely an exercise in 
memory management. At some level that’s true of nearly all 
software, but luckily we don’t usually need to see that detail. 

Memory considerations are abstracted away, that is, hidden 
out of sight.

Summary
Memoization is an important technique. At the cost of 

adding complexity to the software, we can increase perfor-
mance. However, it only makes sense where we’re repeating 
the same calculation (or lookup, or other operation) many 
times.

The more general concept of lookup tables can persist 
long term—even years rather than fractions of a second with 
memoization. Lookup tables even used to be published as 
print books. We took a peek at how Swiss Adventure does a 
table lookup from one memory store to another.

 Ed Barnard had a front-row seat when 
the Morris Worm took down the Internet, 
November 1988. He was teaching CRAY-1 
supercomputer operating system internals to 
analysts as they were being directly hit by the 
Worm. It was a busy week! Ed continues to 
indulge his interests in computer security 
and teaching software concepts to others. 
@ewbarnard
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end of 2019, we’ll publish the results 
under Creative Commons licensing.
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