
www.phparch.com

How to Tame
Your Data

Education Station:
Data Structures, Part Two

Community Corner:
Philosophy and Burnout,
Part Two—Logic Fails

Internal Apparatus:
Memoization

Security Corner:
Credentials and Secrets
Management

finally{}:
Conferences and
Community

ALSO INSIDE

Serverless PHP With Bref,
Part Two

Containerizing Production
PHP

Map, Filter, and Reduce in
PHP

Three Interesting MySQL 8.0
Features for Developers

June 2019
Volume 18 - Issue 6

Oscar
Free Sample

Save the Date!

October 23-24

Washington D.C.

world.phparch.com

We’re Hiring!
Learn more and apply at
automattic.com/jobs.
Automattic wants to make the web a better
place. Our family includes WordPress.com,
Jetpack, WooCommerce, Simplenote,
WordPress.com VIP, Longreads, and more.
We’re a completely distributed company,
working across the globe.

 www.phparch.com \ June 2019 \ 37

Internal Apparatus

Memoization
Edward Barnard

Memoization is another form of memory use. I see it regularly used for improving application
performance, but it’s also used to improve compiler performance. To learn the concept, we’ll use a
PHP project with database tables, then look at other ways to use the technique.

1	 Samantha Quiñones:
https://twitter.com/ieatkillerbees
2	 PDO: https://php.net/book.pdo
3	 this benchmark:
https://php.net/language.types.string#120160

“Memoization” is a strange word. It
names a technique for saving the result
of expensive function calls. Where
additional calls to the same function
with the same input are guaranteed to
produce the same output, we can save
that output (we’re making a “memo,”
which is where the name comes from).
The next time we make that call, we first
check for the saved result of a previous
calculation (with the same inputs).

For example, if we are reading the
exact same database row, assuming the
row has not been updated, we should
receive the same result every time. That
operation is, therefore, a candidate for
memoization.

Last month we looked at memory
abstractions—concepts we use all the
time without really thinking about
them. We also introduced the Swiss
Adventure project as an exercise in
memory management but leaving the
details for this month.

At php[tek] 2019, Samantha
Quiñones1, in Caching on the Bleeding
Edge for the Advanced PHP track,
explained memoization. It’s an
important technique you’ve likely used
yourself. Compilers use the technique
as well—and that’s why we’re here.

I prefer to work from the known
to the unknown (when I can). That is,
take something familiar as my starting
point, before working into unfamiliar
territory. I have a project that I use for
teaching PHP’s PDO2 and, specifically,

constructing MySQL prepared state-
ments.

My Prepared Statements Project
uses memoization as a performance
enhancement—we’ll focus on where
memoization fits into that picture. We’ll
then see other applications of memoiza-
tion and related techniques, including
in the original Swiss Adventure.

Performance
Our project begins with a benchmark

measuring the performance of various
file-import techniques. See Figure 1. It’s
important to gather real information
before considering optimization. As
we’ll see below, performance optimiza-
tions should only be considered when
proven to be necessary.

Performance improvements always
come at a cost. Sometimes it’s the “time
versus space” trade-off as we learned
last month. The more we make use of
faster memory such as L1 processor
cache, the faster our software can run.
Other times, as here, performance
improvements come from choosing

different programming techniques. At
the cost of greater development time,
we improve run time.

A classic example is using single 'a
string' versus double "another string"
quotes around a PHP string. Which one
is faster? At what point would it make
a difference? Based on this benchmark3,
we’d need more than 1,500 string
manipulations to add a single milli-
second to the page load time with PHP
7.0.

If we’re doing 1,500 string manip-
ulations during a web page load, we
should consider different programming
techniques before we worry about
prematurely optimizing single and
double quotes!

For the record, I use both single and
double quotes. I try to make the code as
readable as possible to the likely audi-
ence. I use double quotes for simple
variable interpolation, and generally,
use single quotes otherwise (to signal
that there is no variable interpolation
involved).

Figure 1. Benchmark 100,00 Row InsertsSam
ple

phparch.com
https://twitter.com/ieatkillerbees
https://php.net/book.pdo
https://php.net/language.types.string#120160

38 \ June 2019 \ www.phparch.com

Memoization
Internal Apparatus

Donald Knuth writes4:

Programmers waste enormous times thinking about,
or worrying about, the speed of noncritical parts of their
programs, and these attempts at efficiency actually have a
strong negative impact when debugging and maintenance
are considered. We should forget about small efficiencies,
say about 97% of the time: premature optimization is the
root of all evil. Yet we should not pass up our opportuni-
ties in that critical 3%.

Meanwhile, the law of the instrument5 warns of over-re-
liance on a specific skill. Abraham Maslow explained, “I
suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”

In this case, we’re looking at various ways to import 100,000
rows from a file and insert them into a database. From the
benchmark, we can see the two results on the left, “Model
Save” and “Model Save Many,” are an order of magnitude
slower than the two middle results, and two orders of magni-
tude slower than the right-most result.

However, we don’t normally insert 100,000 rows into a data-
base on a normal web page load! So, we definitely don’t need
to convert normal web applications to use the faster tech-
niques examined with this benchmark. We have a hammer,
but not everything is a nail, so to speak.

On the other hand, many web applications do need to
perform file imports from time to time. When the file import
is taking too much time, impacting normal operations, that’s
the time to consider some type of optimization.

Let’s begin optimizing by looking at the table design. The
import file, in CSV format (comma-separated values), looks
like Figure 2. The first row contains the column names.

We’re looking at GPS data exported from my Garmin
hand-held GPS device used for hiking. We imported 100,000
rows of data for the benchmark. The file-import details don’t
matter; we’re focused on efficiency and memoization.

Note the first column, “motion,” contains the same value
for all rows shown. We have duplicated content—providing
an opportunity for improving efficiency.

The sixth column, “nearest,” shows the nearest known
waypoint for that specific location. All rows again have dupli-
cate content.

We can normalize6 our database table. That is, we can
refactor the table structure. We’ll extract “motion” to be placed
in its own table, and we’ll extract “nearest” to become its own
table. The “motion” table only needs three rows because there
are only three possible motion values in the entire import file.

4	 writes: https://phpa.me/wikiquote-knuth-art
5	 law of the instrument: https://phpa.me/wikip-law-instrument
6	 normalize: https://phpa.me/wikip-3rd-normal

By converting the text column (averaging about 6 bytes per
row) to a pointer to the motion table (requiring one byte per
row), we’ve saved a few bytes of storage per row. Saving half a
megabyte (5 bytes saved times 100,000 rows) doesn’t, in itself,
justify the added complexity of using multiple tables. But with
billions of rows, backup copies, and multiple replications, and
so on, the savings can add up.

Our new motion table looks like this:

CREATE TABLE `motion` (
 `id` tinyint(3) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL DEFAULT '',
 PRIMARY KEY (`id`),
 UNIQUE KEY `name` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

Our nearest-waypoint table is similar:

CREATE TABLE `waypoint` (
 `id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL DEFAULT '',
 PRIMARY KEY (`id`),
 UNIQUE KEY `name` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

So far, we haven’t seen anything unusual. We’re refactoring
our import table to slightly improve row-insert performance.
Fewer bytes per row get sent to the main table; inserts to the
other two tables are relatively rare as compared to the main
table, or are they?

One approach is to insert the same value over and over again
to motion or waypoint. The unique-key constraint prevents
that. We could read the same value over and over again, to
see if it’s already there, and use its row ID in the main table.
Or, we could read it once, and remember the answer (the row
ID). That’s where memoization comes in. See Figure 3.

Figure 2. CSV File

Figure 3. Lookup Utility FlowSam
ple

phparch.com
https://phpa.me/wikiquote-knuth-art
https://phpa.me/wikip-law-instrument
https://phpa.me/wikip-3rd-normal

 www.phparch.com \ June 2019 \ 39

Memoization

Internal Apparatus

Listing 1. Memoization Utility

 1. <?php
 2.

 3. namespace App\Util;
 4.

 5. use Cake\Database\Connection;
 6. use Cake\Database\StatementInterface;
 7.

 8. final class LookupUtil
 9. {
10. /** @var int Maximum cached IDs */
11. private static $cacheLimit = 200;
12.

13. /** @var array One singleton per table */
14. private static $instances = [];
15.

16. /** @var Connection */
17. private $connection;
18.

19. /** @var StatementInterface */
20. private $query;
21.

22. /** @var StatementInterface */
23. private $insert;
24.

25. /** @var string Table name */
26. private $table;
27.

28. /** @var array Cache of IDs given name */
29. private $cache = [];
30.

31. private function __construct(Connection $connection,
32. $table,
33. array $dependencies) {
34. $this->connection = $connection;
35. $this->table = $table;
36. if (count($dependencies)) {
37. $this->injectDependencies($dependencies);
38. }
39. $this->prepareStatements();
40. }
41.

42. /**
43. * Testing support
44. *
45. * @param array $dependencies
46. * @return void
47. */
48. private function injectDependencies(array $dependencies) {
49. foreach ($dependencies as $key => $value) {
50. if (property_exists(static::class, $key)) {
51. $this->$key = $value;
52. }
53. }
54. }
55.

56. private function prepareStatements() {
57. if (!$this->query) {
58. /** @noinspection SqlResolve */
59. $sql
60. = 'SELECT id FROM prepared_statements.' .
61. $this->table . ' WHERE ̀ namè = ?';

62. $this->query = $this->connection->prepare($sql);
63. }
64. if (!$this->insert) {
65. /** @noinspection SqlResolve */
66. $sql
67. = 'INSERT INTO prepared_statements.' .
68. $this->table . ' (`name`) VALUES (?)';
69. $this->insert = $this->connection->prepare($sql);
70. }
71. }
72.

73. public static function lookup(Connection $connection,
74. $table, $value) {
75. $instance = static::getInstance($connection, $table);
76. return array_key_exists($value, $instance->cache) ?
77. $instance->cache[$value] :
78. $instance->runLookup($value);
79. }
80.

81. /**
82. * @param Connection $connection
83. * @param string $table
84. * @param array $dependencies
85. * @return LookupUtil
86. */
87. public static function getInstance(Connection $connection,
88. $table,
89

. array $dependencies = []) {
90. if (!array_key_exists($table, static::$instances)) {
91. static::$instances[$table]
92. = new static($connection, $table, $dependencies);
93. }
94. return static::$instances[$table];
95. }
96.

97. private function runLookup($value) {
98. if (count($this->cache) >= static::$cacheLimit) {
99. $this->cache
100. = []; // Cache got too big; clear and start over
101. }
102. if (!$this->query) {
103. // Should only happen when developing unit tests
104. throw new \InvalidArgumentException('No query for ' .
105. $this->table);
106. }
107. $parms = [substr($value, 0, 255)];
108. $this->query->execute($parms);
109. $row = $this->query->fetch('assoc');
110. if (is_array($row) && array_key_exists('id', $row)) {
111. $id = (int)$row['id'];
112. } else {
113. $this->insert->execute($parms);
114. $id = (int)$this->insert->lastInsertId();
115. }
116. $this->cache[$value] = $id;
117. return $id;
118. }
119. }

Sam
ple

phparch.com

40 \ June 2019 \ www.phparch.com

Memoization
Internal Apparatus

Note that both tables have a column name. Both tables have
identical structure, except the primary key uses a small-
er-range data type for motion. Our memoization7 technique is
a form of read-through caching8.

Our cache is a simple key-value array. The key is the name
column from our table, and the key’s value is the id column
for that table row. We maintain one cache array for each table.
1.	 If our array (the cache) contains the target value (“Drive”

for the motion table, or “Marshall House” for the waypoint
table), return the row ID for that target value.

2.	 Otherwise, our value is not in cache. Attempt to read that
row from the database.

3.	 If we received a result from the database read, we
perform “read-through caching.” That is, we store the
just-read target value in our cache, so we remember that
row ID. That’s called “memoizing” the value. If we need
to look up this same target value in the future, it will be
available to us from the cache (as Step 1 above) and skips
querying the database. Return the now-cached row ID
for that target value.

4.	 However, if we did not receive a result from the database
read, we need to add this target value to the table. Do
the row insert and note the last insert ID. Memoize our
target value by saving the target value, and the last insert
ID, in our cache. Return the now-cached row ID for that
target value.

The PHP implementation is Listing 1.
This utility uses an array of Singletons, with one singleton

per table. The Singleton is generally considered an anti-pat-
tern, because it’s a way of creating global state. Software
depending on global state becomes more difficult to test—
and thus the singleton is generally discouraged.

However, there is one place we accept singletons—for
resource connections. We use a single connection for a
database, for example. Our LookupUtil class does something
similar. Each of its singletons is memoizing the contents of
a specific table. The singleton makes sense—but that doesn’t
make it easier to test!

This utility allows arbitrary depen-
dency injection for testing purposes.
The class constructor __construct() is
private. Its dependency array comes
from static method getInstance(),
which is public. We can, therefore,
write unit tests which pre-fill the
cache, allowing us to exercise all
code paths. Unit tests are online at
https://phpa.me/ewb-cakefest17-tests.
The cache test looks like Listing 2.

7	 memoization:
https://phpa.me/wikip-cache-memo
8	 read-through caching:
https://phpa.me/oracle-readthrough-cache

That’s how memoization works. It’s a way of improving
performance by caching results inside our program code. It
comes with a cost—added complexity. It’s one more place
where things can go wrong. We could, for example, run out of
memory by trying to memoize a billion result rows. Listing 1
solves this by emptying the cache once it reaches 200 values.
(See the top of function runLookup() near line 86.)

Recursion
Wikipedia9 describes how a memoized function remem-

bers the results corresponding to some specific set of inputs.
If we know a function will return the same result for given
inputs, we can memoize that result, creating some sort of
cache that, given this set of inputs, we can return the previ-
ously-determined result.

Note that this is the same concept as our PHP utility. Wiki-
pedia uses the example of recursively computing a factorial
number:

function factorial (n is a non-negative integer)
 if n is 0 then
 return 1 [by the convention that 0! = 1]
 else
 return factorial(n – 1) times n [recursively invoke
 factorial with the
 parameter 1 less than n]
 end if
end function

The problem with the above algorithm is its performance.
It’s costly in time, and costly in space. The recursive nature
means that for computing n factorial, we have n stack frames
comprising the calculation in progress.

Calling a function, in PHP, is expensive relative to not
calling a function. The stack frame controlling the function
call must be allocated and initialized. However, that obser-
vation (that function calls are expensive) is not an excuse
to indulge in premature optimization! It’s far better to write
well-structured, readable and maintainable, code. Only opti-
mize when you have evidence proving it’s necessary!

9	 Wikipedia: https://phpa.me/wikip-memoization

Listing 2

 1. public function testAsFixture() {
 2. $table = 'fest_events';
 3. $cache = ['cache' => ['Event Two' => 2, 'Event Three' => 3]];
 4. LookupUtil::getInstance($this->connection, $table, $cache);
 5. static::assertSame(
 6. 2, LookupUtil::lookup($this->connection, $table, 'Event Two')
 7.);
 8. static::assertSame(
 9. 3, LookupUtil::lookup($this->connection, $table, 'Event Three')
10.);
11. }

Sam
ple

phparch.com
https://phpa.me/ewb-cakefest17-tests
https://phpa.me/wikip-cache-memo
https://phpa.me/oracle-readthrough-cache
https://phpa.me/wikip-memoization

 www.phparch.com \ June 2019 \ 41

Memoization

Internal Apparatus

To calculate six factorial, we must:
1.	 Multiply 6 by five-factorial,
2.	 Multiply 5 by four-factorial to provide five-factorial,
3.	 Multiply 4 by three-factorial to provide four-factorial,
4.	 Multiply 3 by two-factorial to provide three-factorial,
5.	 Multiply 2 by one-factorial to provide two-factorial,
6.	 Multiply 1 by zero-factorial to provide one-factorial,
7.	 Provide one as zero-factorial,
8.	 Pop the results back up the stack, ultimately returning

six-factorial.
If, for some reason, we’re computing various factorial

numbers, we could save a lot of time and space by memoizing
each result the first time it’s computed. We call that amor-
tizing the calculation cost across multiple calculations.

In fact, we could even store pre-computed factorial values
in a lookup table. That lookup table could be in memory, a
database, or any other long-term storage. Such tables used
to be published as print books. We had books for chemistry
calculations, prime numbers, random numbers, even ocean
navigation10.

The rainbow table11 is another application of this concept.
It’s a precomputed table for cracking passwords. If we know
the password-encrypting (hashing) algorithm, we could
pre-compute the hash for a dictionary or other list of known
passwords. Upon obtaining a list of “secure” but unsalted
hashed passwords, we compare each hash to our rainbow
table. Any time we find a match, we have obtained the plain-
text password without the computing expense beyond one
lookup.

This, by the way, is why it’s important to add a varying salt
to a password before hashing it. It defeats the rainbow-table
attack. There are other possible attacks, to be sure, but the
rainbow table is a great example of memoizing. Criminals
can—and do—share rainbow tables.

“Memoizing” refers to short-term caching inside a function
or method. However, the general concept can be imple-
mented for the long term, such as publishing the table in a
book or sharing rainbow tables as files.

Compilers
Compilers, in general, use parsers. A parser attempts to

recognize program statements and syntax. A given language
token, such as a left parenthesis (, could indicate one of
several different parts of the PHP language. It could be part
of a function declaration, an array declaration, a function call,
etc.

The parser, therefore, “runs down various rabbit holes” to
create the correct syntax tree for our software. The recur-
sive descent down these rabbit holes can be assisted by

10	 ocean navigation: https://phpa.me/wikip-practical-navigator
11	 rainbow table: https://phpa.me/wikip-rainbow-table

memoization12. Any rabbit hole that, given a set of inputs,
always returns the same result, can be memoized, allowing
the compiler to complete its parsing steps more quickly.

Tight Memory
Another example comes from Swiss Adventure—not the

PHP project, but the original assembly-language code. The
original code ran on a processor with only 128 Kbytes of
memory available, and therefore the program could only
have small pieces resident in local memory at a time.

However, Swiss Adventure has a large table of locations,
place descriptions, navigation information from one location
to the next, and so on. How does it all fit?

We use a similar technique, based on the available hard-
ware. In addition to the 128KB of local memory in the CPU,
the processor had a large store of cache memory, called Buffer
Memory or “MOS” in the code. “MOS” refers to a type of
memory based on silicon Metal-Oxide-Semiconductor tech-
nology.

The code is online13. Here’s the technique for getting
an adventure description into local memory so it can be
displayed to our hapless adventurer.
1.	 Allocate eight words of space in Local Memory. In

modern terms, we’d call that heap space.

 AA = D'8
 GETMEM AA,D1 .Allocate space for SW@ entry

The above code places the (decimal) value 8 into variable
AA. We then call the memory allocator to provide us that
much memory, placing the allocated memory address in
variable D1.

My point in showing you the assembly code is that the
language really doesn’t matter. So long as we understand the
task we’re trying to accomplish, we can recognize its accom-
plishment in any programming language.

We’re all familiar with PHP syntax. PHP and JavaScript are
both “C-like” languages, meaning statements, expressions,
and general structure are similar to C. Thus reading the C
compiler code, given our knowledge of PHP syntax, is rela-
tively easy. If we can follow the assembly code above, the PHP
compiler will be easier!

The PHP compiler allocates space for PHP variables. The
variables are called Zval entities, and we use emalloc to allo-
cate memory for them from the heap. It’s the same operation
as the sample assembly code above.
2.	 We’re looking for the text with our description location

in Buffer Memory. That’s the large cache memory. Once
we locate that description, we copy the information into
local memory.

12	 memoization: https://phpa.me/wikip-memoize-parsers
13	 online: https://phpa.me/swiss-adv-ioplm

Sam
ple

phparch.com
https://phpa.me/wikip-practical-navigator
https://phpa.me/wikip-rainbow-table
https://phpa.me/wikip-memoize-parsers
https://phpa.me/swiss-adv-ioplm

42 \ June 2019 \ www.phparch.com

Memoization
Internal Apparatus

 BL = ML + AA .Absolute Buffer Memory address
 BU = BU+1,C#0
 AA = 2
 MOSR BU,BL,D1,AA .Read SW@ entry

Buffer Memory addresses are so big that we have to hold
them in two variables (BL and BU, for Buffer Memory Lower
and Buffer Memory Upper). Again, the exact syntax does not
matter, but the principles do. We have two structures with
differing word sizes. Eight units of local memory (allocated
in step one) correspond to two units of Buffer Memory. So
in reading buffer (MOS) memory with MOSR, we’re reading
two units (variable AA), with the destination being our local
memory address in variable D1 from step 1.

In fact, we’ve only read 16 bytes (two 64-bit words). That’s
not enough for a full location description for an adventure
game. What we actually read was a pointer to the text descrip-
tion. The assembly-language code then proceeds to allocate
memory for the full text description, and read it into local
memory.

We then display the description on the operator console
and release the local memory. If we didn’t release the memory
we’d have a memory leak—not a good thing!

The original Swiss Adventure is largely an exercise in
memory management. At some level that’s true of nearly all
software, but luckily we don’t usually need to see that detail.

Memory considerations are abstracted away, that is, hidden
out of sight.

Summary
Memoization is an important technique. At the cost of

adding complexity to the software, we can increase perfor-
mance. However, it only makes sense where we’re repeating
the same calculation (or lookup, or other operation) many
times.

The more general concept of lookup tables can persist
long term—even years rather than fractions of a second with
memoization. Lookup tables even used to be published as
print books. We took a peek at how Swiss Adventure does a
table lookup from one memory store to another.

 Ed Barnard had a front-row seat when
the Morris Worm took down the Internet,
November 1988. He was teaching CRAY-1
supercomputer operating system internals to
analysts as they were being directly hit by the
Worm. It was a busy week! Ed continues to
indulge his interests in computer security
and teaching software concepts to others.
@ewbarnard

OSMI Mental Health in Tech Survey
Take our 20 minute survey to give us
information about your mental health
experiences in the tech industry. At the
end of 2019, we’ll publish the results
under Creative Commons licensing.

Take the survey: https://osmihelp.org/research
Sam

ple

phparch.com
https://twitter.com/ewbarnard

http://phpa.me/mag_subscribe

	Memoization
	Edward Barnard

