
www.phparch.com

Find The Way With
Elasticsearch

Education Station:
Abstraction—The Silent Killer

Community Corner:
Philosophy and Burnout,
Part Three—Guiding Principles

Internal Apparatus:
A Walk Through the Generated Code

Security Corner:
Defending Against Insider Threats

The Workshop:
Run Amazon Linux Locally

finally{}:
Semver, PHP, and WordPress

ALSO INSIDE

Elasticsearch—There and Back
Again

Add Location Based Searching to
Your PHP App With Elasticsearch

Defensive Coding Crash Course

The Devilbox and Docker

July 2019
Volume 18 - Issue 7

We’re Hiring!
Learn more and apply at
automattic.com/jobs.
Automattic wants to make the web a better
place. Our family includes WordPress.com,
Jetpack, WooCommerce, Simplenote,
WordPress.com VIP, Longreads, and more.
We’re a completely distributed company,
working across the globe.

 www.phparch.com \ July 2019 \ 17

FEATURE

Defensive Coding Crash Course
Mark Niebergall

Ensuring software reliability, resiliency, and recoverability is best achieved by practicing
effective defensive coding. Take a crash course in defensive coding with PHP as we cover
attack surfaces, input validation, canonicalization, secure type checking, external library
vetting, cryptographic agility, exception management, automatic code analysis, peer code
reviews, and automated testing. Learn some helpful tips and tricks and review best practices
to help defend your project.

In this article, we focus on coding
techniques and PHP language features
which can be used to help increase the
defensive posture of an application.
Increasing the defensiveness of the
code increases the ability to mitigate
offensive attacks and leads to higher
application stability.

Defensive Coding
Historically, many people associate

PHP with being insecure and exploit-
able. The language has shed a lot of
insecure settings and practices. PHP
affords a simpler syntax and has a repu-
tation as easier to learn than some other
languages. As a result, the code can be
written and released without authors
implementing or fully understanding
defensive coding practices. While
being simple to use and understand is
a significant benefit for the language, it
also means developers need to have a
better understanding of proper tech-
niques and approaches to creating code
that is resistant to bad behaviors and
bugs.

When referring to the term “defen-
sive,” the meaning is applied to code
that assumes the worst is going to
happen and correctly handles those
scenarios. That assumption drives
application development that makes no
assumptions. The application fails safe
and properly handles unexpected prob-
lems. Countermeasures are put in place
to improve security and reduce the like-
lihood of a successful attack. This work
takes a concerted effort across a broad
range of development concepts, from
how data is handled to logging users

and how developers build and review
code changes.

As we go through these different
domains, we’ll emphasize using built-in
and readily available PHP language
constructs.

Attack Surface
To determine where to focus on

strengthening your defensive measures,
it’s crucial first to identify the attack
surface. The attack surface is the sum
of all points of a possible attack. The
larger the attack surface, the harder it
is to defend. For example, if an applica-
tion has many public-facing APIs, then
each of those APIs is included in the
attack surface. If one of those public-
facing APIs is to reset a password on
a user, consider how that API could
be leveraged to reset a password on
an account by an unauthorized actor.
If an application imports files that are
provided by various third-parties or
end-users, then those file importers
are included as attack surfaces a mali-
cious user could use to gain access to
an application. Uploads could include
imported CSV files or profile pictures,
or any other file a user can upload. If
an application accepts user input from
forms, then each of those forms is
a point to consider. Some common
forms to start looking at include login,
contact, comments, feedback, and user
profiles.

Data Types
A core principle in PHP is correctly

using data types. With PHP being a
loosely-typed language where variables

can change data types, this can be a bit
harder to accomplish fully. With recent
language changes, including method
return types, the data types are more
predictable than they used to be. With
the incoming class property data types
in PHP 7.4, this becomes even easier to
achieve.

There are eight data types available.
Can you name them all? They fall into
three categories: 4 scalar, 2 compound,
and 2 special. Scalar types, which
include Boolean, integer, float, and
string, along with the special type of
null, are great for storing most simple
values. The compound type array is
handy, but be cautious with overuse
since its structure is not rigid. Objects
are ideal for a vast majority of logic and
workflows. The special type of resource
is commonly encountered when using
system resources, such as a database
connection or interacting with a system
file. Within PHP internals, there is
a slow and gradual move away from
using resources and instead uses classes.

Scalar Compound Special

boolean array null
integer object resource

float

string

Using the appropriate data type for
data within an application is where
defensive coding practices kick in. If
a value is an id field that is always an
integer, then an integer should be used

phparch.com

18 \ July 2019 \ www.phparch.com

Defensive Coding Crash Course

to represent that in PHP. Similar best practices apply for float,
boolean, string, and null values.

Parameter type hinting should be used whenever possible.
If a setter method exists for a value that is an integer, then
hinting the type as integer should be used to coerce an integer
to be passed in. If declare(strict_types=1); is used to enable
strict typing, then that typing becomes enforced. Enable strict
types whenever possible to improve data consistency and
platform predictability (when used with proper exception
management). Without strict types enabled, the value goes
through typecasting, which may lead to unexpected values.
Use ? to indicate a value that can be null. Typehint to classes
whenever possible as well to enforce passing in a specific class
instance as an argument. The class typehint can be the actual
class, an abstract that it extends, an interface the class imple-
ments, or a trait the class uses.

public function setSomeId(int $id) {...}
public function setFinancialValue(float $value) {...}
public function setName(string $name) {...}
public function setOptionalProperty(string
?$nullableProperty) {...}
public function setService(Service $service) {...}

Likewise, the method return type should always be declared
to maximize code predictability. Increasing predictability
also increases the defensive rating.

public function getSomeId(): int {...}
public function getFinancialValue(): float {...}
public function getName(): string {...}
public function getOptionalProperty(): ?string {...}
public function getService(): Service {...}

Use the value null correctly. An integer value of 0 has a very
different meaning than a value of null. A string that is not set
should be null because an empty string could mean the user
supplied no value or left an optional field blank. Use null to
identify a value that has not been set yet or the lack of a value.

Input Validation
Building on the core concepts of data types is validating all

input. Input includes data coming into an application from
end-users, file uploads, integration partners, APIs, and other
resources. Treat all inbound data should as not trusted; there-
fore, validate all inbound data. A big part of data validation is
filtering input. The saying “filter input, escape output” rings
true and is a question to ask during development. If the data
is input, has it been filtered? If the data is output, has it been
escaped?

Filtering data encompasses only accepting data which
passes specific criteria. If it doesn’t match the criteria, then it
gets filtered out. The age of a person is always an integer, but is
there a filter for maximum value? If a person’s age is inputted
as 200, that is not okay and should be rejected, as should any
negative value. Valid values would be a range of between 0
and 128, depending on how old you can accept as valid.

When creating filters, PHP provides filter_var to help make
filtering easier. Using filter_var, a variable can be filtered out
if it doesn’t meet the passed in filtering rules and options. The
signature for filter_var is:

filter_var (mixed $variable [, int $filter = FILTER_DEFAULT
 [, mixed $options]]) : mixed

To filter a person’s age, you could use filter_var($age,
FILTER_VALIDATE_INT) to confirm the value is an integer. A
common data point that is difficult to validate is an email
address, but with filter_var($email, FILTER_VALIDATE_EMAIL)
it becomes simple. If the return from filter_var is a Boolean
false, then the input can be rejected as invalid. All the filters
available are:

Filter Description

FILTER_VALIDATE_BOOLEAN
Returns TRUE for 1, "true", "on",
and "yes" and FALSE otherwise.

FILTER_VALIDATE_DOMAIN
Validates the domain against
various RFCs.

FILTER_VALIDATE_EMAIL

Validates e-mail addresses
against the syntax in RFC 822
with some exceptions.

FILTER_VALIDATE_FLOAT
Validates a value as float, and
then converts to float if valid.

FILTER_VALIDATE_INT

Validates value as integer and
you can specify a min and max
range of allowed values.

FILTER_VALIDATE_IP

Validates value as IP address
and allows excluding reserved
ranges.

FILTER_VALIDATE_MAC
Validates value as MAC
address.

FILTER_VALIDATE_REGEXP
Validates against a custom
regular expression

FILTER_VALIDATE_URL
Validates a URL based on RFC
2396

Along with the minimum and maximum range of a value—
such as the age of a person—the length and content should be
further scrutinized. When appropriate, filter out data based
on the length and the content. If a value should be between
10 and 12 characters, then apply a length check. The simplest
way to check the length is with strlen()1, which may be suffi-
cient, but when character encoding and internationalization
comes up, there are some edge cases that do not work. Use
mb_strlen()2 instead, which counts single and multibyte char-
acters as one character of length.

1	 strlen(): http://php.net/strlen
2	 mb_strlen(): http://php.net/mb_strlen

phparch.com
http://php.net/strlen
http://php.net/mb_strlen

 www.phparch.com \ July 2019 \ 19

Defensive Coding Crash Course

Another filtering option is to blacklist values or to whitelist
values. Blacklists explicitly deny or block particular values.
Whitelisting refers to allowing only specific values. Whitelis-
ting is the ideal filtering method, although usually not the
most practical. Blacklists tend to need constant maintenance
as users find ways around forbidden values.

Canonicalization
Standardizing on terminology and data formatting is

covered with canonicalization. Within an organization, using
a specific term instead of others is common, and that known
term should be used. The same applies to using chosen
formats for data.

Consider the format of a date. Internationally we see
dates formatted as m/d/Y, d/m/Y, and Y/m/d. These dates
need to be normalized, or canonicalized, into a standard
format. For a date, this most likely would be formatted as the
International Organization for Standardization (ISO) 8601
standardized format, which is Y-m-d (e.g., 2019-12-31 for
December 31, 2019). The application filtering would need to
know the inbound format and transform the value into the
selected format. Use date('c') to get the current ISO-8601
date with time and timezone offset. The PHP documentation
for the date function3 provides a full list of available date and
time formats.

The same rule applies when converting to data types. If users
can submit various values that ultimately map to a Boolean
true or false, then multiple terms should be accepted. For
example, an input of 1, true, yes, or on may all translate to
true and anything else translates to false.

Library Vetting
External libraries should all be vetted to ensure they

are secure and reliable. With PHP’s dependency manager
Composer making package inclusion simple, adding libraries
to a project is easier than ever. With that ease of inclusion
also comes the responsibility for the developer to consider
the library’s impact on the application’s defensive posture.

Before including a library, research the project and see how
it measures up to expected standards. You can go through
and ask each of these questions to gauge the viability of the
project:
1.	 How fast does the project address bugs?
2.	 How does the project address security issues?
3.	 Does the project have automated tests?
4.	 What level of code coverage do automated tests cover?
5.	 How popular is the project in terms of use and contrib-

utors?
6.	 Does the source code appear to be well-written and

follow best practices?
7.	 When was the last time the project was updated?

3	 date function: https://php.net/function.date

8.	 With what versions of PHP is the project compatible?
9.	 Is the dependency free from known security vulnerabil-

ities? SensioLabs Security Checker4, which is included
with Symfony, can check for this.

These are all important considerations to help choose
useful libraries that do not open up exploits or unnecessarily
introduce vulnerabilities in your application.

Cryptographic Agility
Cryptography is a continually changing realm. Both the

attackers and the defenders are making improvements. Being
able to adapt to these changes easily is cryptographic agility.
Staying on newer PHP versions and current libraries is an
easy way to help improve this agility rating. It is imperative
that you do not use your algorithms or “roll your own crypto.”
Researchers dedicate entire careers to making secure algo-
rithms.

Consider the routine task to securely validate passwords
to authenticate users. Using a broken hashing algorithm or
using a key-based encryption approach are insecure ways
to address this problem. Old hashing algorithms, like MD5,
SHA1, and Panama, can lead to cracking the passwords if the
data is breached. Using encryption instead of hashing can
expose the passwords if the keys can be found. PHP has made
securely handling passwords straightforward with password_
hash()5 and password_verify()6. Use password_hash to hash
a password, and use password_verify to check if a password
entered by a user matches the hash of their actual password.
It has a default hashing algorithm designed to change over
time. In PHP 5.5+, it is blowfish (bcrypt), but since then other
algorithms have been added, and the default could change.
There is a password_needs_rehash to help identify if a pass-
word needs to be rehashed with the current algorithm. Then,
store the hashed value in a database or whatever data storage
tool is being used.

$hashedPassword = password_hash($plainTextPW, PASSWORD_DEFAULT);
// ...
$isValid = password_verify($plainTextPW, $hashedPassword);

Another common need during development is for cryp-
tographically secure pseudo-random generated (CSPRNG)
values. PHP has random_bytes and random_int; if a random
token string is needed, this can be generated with:

$token = bin2hex(random_bytes($tokenLength));

For a CSPRNG integer value, the below will work to
generate that value:

$number = random_int($minLength, $maxLength);

4	 SensioLabs Security Checker:
https://github.com/sensiolabs/security-checker
5	 password_hash(): http://php.net/password_hash
6	 password_verify(): http://php.net/password_verify

phparch.com
https://php.net/function.date
https://github.com/sensiolabs/security-checker
http://php.net/password_hash
http://php.net/password_verify

20 \ July 2019 \ www.phparch.com

Defensive Coding Crash Course

If more advanced cryptography is needed, PHP has a
couple of great ways to securely do this. PHP 7.2 added the
Sodium extension to PHP core. The OpenSSL extension has
been available for quite some time and is also actively main-
tained. A common use of both of these is for symmetric and
asymmetric cryptography, which involves creating keys and
using those keys to encrypt and decrypt data. Symmetric-key
encryption uses a shared private key to both encrypt and
decrypt data and relies on keeping the key secret from others.
Asymmetric-key encryption uses a private key and a public
key. The private key is used by the data owner to encrypt
the data, and the public key is then used to decrypt the data.
The process can also go the other way, with the public key
being used to encrypt data, and the private key being able to
decrypt the data.

A practical example of this is a secure website that has
HTTPS using TLS, where the server has the private key, and
website users receive the public key to decrypt data coming
to them. The website users also use the public key to encrypt
data sent back to the website server. This way, the data trans-
ferred back and forth is encrypted.

Be aware the mcrypt extension no longer ships with
PHP core as of 7.2. If your applications still rely on the
functionality it provides, you need to update it to use
another crypto library.

Exception Management
In software development, never assume unexpected behav-

iors won’t happen. Writing code that handles these problems
helps provide a stable platform. Exception management deals
with how these problems are handled when they occur. The
use of try and catch in PHP provides a clean way to do this.

Consider a function that makes an API call to an external
entity. Many things could go wrong, ranging from the server
having downtime to a programming error to an unparsable
response. Without exception handling, the code may look
something like Listing 1.

The problem with this is we don’t know what went wrong
given the response. Perhaps it is useful to know if there was
a different response status code, or there is an alternative
URI a request can be sent to if there is a problem. Excep-
tion handling can be used to make this better. This practice
includes using different custom exceptions so the handling
code can know what went wrong. See Listing 2.

Automated Code Analysis
Automated code analysis tools can be set up to run against a

code repository. Analysis types can range from code statistics
to code styling to development patterns to code dependencies.
These tools can be run locally during the software develop-
ment process and are commonly coupled with Continuous
Integration (CI). Running these tools gives insights into code
health and alignment with project goals.

There are many PHP code analysis tools
available. A good list can be found at
https://github.com/exakat/php-static-analysis-tools. Some
highlights include:

•	 PHPStan: https://github.com/phpstan/phpstan automat-
ically finds bugs within code.

•	 PHPCS: https://github.com/squizlabs/PHP_CodeSniffer
a variety of code sniffers to check code styling and
compatibility for upgrading PHP versions.

•	 PHPLOC: https://github.com/sebastianbergmann/phploc
for measuring project code structure.

•	 SensioLabs Security Checker:
https://github.com/sensiolabs/security-checker to check
dependencies for known security vulnerabilities.

Try out a few tools, see what works for your projects, and
what fits your needs.

Peer Code Reviews
Peer code reviews provide a formalized way to share knowl-

edge and catch hard-to-find problems with code. These types
of reviews occur when a peer reviews a pull request. The code
changes are examined, and the peer might manually test the

Listing 1

 1. public function callApi($uri, Request $request): ?Response
 2. {
 3. $response = $this->getApiClient()
 4. ->makeRequest($uri, $request);
 5.

 6. if ($response === null || $response->getCode() === 500
 7. || $response->getCode() !== 200) {
 8.

 9. return null;
10. }
11.

12. return $response;
13. }

Listing 2

 1. public function callApi($uri, Request $request): Response {
 2. $response = $this->getApiClient()
 3. ->makeRequest($uri, $request);
 4.

 5. if ($response === null) {
 6. throw new NullResponseException(‘Response was null’);
 7. } elseif ($response->getCode() !== 200) {
 8. throw new NotOkayResponseCodeException(
 9. 'Response code was ' . $response->getCode()
10.);
11. }
12. return $response;
13. }

phparch.com
https://github.com/exakat/php-static-analysis-tools
https://github.com/phpstan/phpstan
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/sebastianbergmann/phploc
https://github.com/sensiolabs/security-checker

 www.phparch.com \ July 2019 \ 21

Defensive Coding Crash Course

code. Peer code reviews should be used to complement, not
replace, automatic code analysis, and automated tests. Most
source code repository hosts have a code review tool to facili-
tate peer code reviews before the code being merged in.

Having a peer who understands an application do a
thoughtful review of code changes can identify business
logic problems, security vulnerabilities, cascading impacts of
the changes, scalability concerns, and best practices missed.
Meaningful comments and constructive critiques can improve
a whole team or community. Sharing knowledge on reviews
helps lift everyone to higher levels that cannot be achieved
individually and helps spread project knowledge, so there is
not one person who knows a part of a project. Conversations
can be started on how to improve an application. There are
many benefits to having a good peer code review process in
place.

There are some drawbacks of peer code reviews. Syntax
problems may not be identified, so automated analysis is
important. Comments made in writing tend to be interpreted
in the worst possible way, so take time to have conversations
instead, and be aware that the reviewer most likely has good
intentions. Peer reviews are not a replacement for automatic
tests.

Automated Testing
Having automated tests, both unit and behavioral, can

significantly improve code quality, decrease defects, and
allow for refactoring with confidence. For unit tests, good

choices include PHPUnit and Codeception. Behavioral tests
can be written using Behat, PHPSpec, Codeception, or others.
The testing framework depends on project needs and may be
influenced by the PHP framework being used.

To achieve Continuous Integration (CI), and Continuous
Deployment (CD), automated tests are an absolute must.
Having CI and CD positions a project to better respond
defensively to any emerging threats. Code changes can be
made, tests executed to validate the changes, and code then
deployed into production.

Pulling Everything Together
With so many domains within defensive coding practices,

there is a lot to take in. Improving your defensive posture takes
time and energy. Experience running into these problems and
finding suitable solutions helps make addressing future prob-
lems easier and more efficient. From cryptographic agility to
automated testing to using the right data type, using these
concepts together builds up the defenses. The saying “defense
in depth” refers to having multiple components coming
together to improve the defense.

Similarly, using the concepts covered in this article, along
with the many other defensive concepts that were not covered,
come together to defend against the inevitable problems. This
quick crash course in defensive coding is intended to refresh
what you may have already learned or experienced, put some
terminology to concepts you may already be familiar with,
and introduce you to a variety of defensive domains. My
hope is you consistently implement changes over time to
improve not only the projects you are involved with but also
to improve your professional skill set as a developer.

 Mark Niebergall is a security-minded
PHP software engineer with over a decade of
hands-on experience with PHP projects. He
is the Utah PHP User Group Co-Organizer
and often speaks at user groups and confer-
ences. Mark has a Masters degree in MIS, is
CSSLP and SSCP cybersecurity certified, and
volunteers for (ISC)2 exam development.
Mark enjoys going for long runs and teaching
his five boys how to push buttons and use
technology. @mbniebergall

Related Reading

•	 Strong Security Stance in the New Year
 by Eric Man. Jan. 2019.
https://phpa.me/security-corner-jan-2019

•	 Securing Your Site in Development and Beyond
by Michael Akopov. Jan. 2018
https://phpa.me/jan18-securing-dev

•	 The Life-Changing Magic of Tidying Your Code
by Bryce Embry. May 2019.
https://phpa.me/embry-tidying-code

phparch.com
https://twitter.com/mbniebergall
https://phpa.me/security-corner-jan-2019
https://phpa.me/jan18-securing-dev
https://phpa.me/embry-tidying-code
http://pantheon.io/register?utm_medium=sponsored&utm_source=[php]tek%20&utm_content=onlinemagazine&utm_campaign=07_2019_[php]tek_conference

22 \ July 2019 \ www.phparch.com

FEATURE

The Devilbox and Docker
Gunnard Engebreth

Starting a new project has its highs and lows; setting up your dev environment should not
be one of them. Back in the day, a dev could spend a couple of days just getting a *nix
environment up and running on a machine and even then, it probably did not mirror the
production environment in the least! The advent of virtual machines (VMs) helped. Now,
we could use something like Vagrant to manage several environments on one machine.
With Docker and the Devilbox, we have a fantastic source for spinning up a development
environment rapidly while not skimping out on complete customization.

127.0.0.1 is where the heart is.
As humans, we feel comfortable in

places we know. It could be your house
or apartment, the local coffee shop you
can bike to with those gluten-free, vegan,
scones, or maybe even at your desk at
work (no judgment). What makes these
places comfortable, no matter how busy
or crowded, is the fact that your expec-
tations about the general atmosphere,
experience, and result rarely rock your
world. The occasional new employee or

“fill-in-the-blank” that is missing is just
something to adjust to. Now, as devel-
opers, we don’t just want comfort, we
want control.

When our team is assigned a new
project, we tend to overlook a significant
step. We can look at the scope, desired
delivery date, technologies involved,
etc. and come up with a reasonable
timeline with milestones and update
meetings, but the hidden possibility
of technical debt is right in front of us,
the dev environment. Unless you have
a bulletproof(ish) system in place to set
up, develop, test, collaborate, version
control, and deploy—there could be a
day or two of work ahead of you. In this
article, I show how to use the Devilbox,
Docker, and Git to go from zero to 100
percent as a team resource for devel-
oping your next project.

What’s in the Box?
The Devilbox1, at first glance, could

be looked at as just another MAMP
or XAMP, but don’t let that fool you.
The DevilBox is a modern and highly

1	 Devilbox: http://www.thedevilbox.org

customizable dockerized PHP stack
supporting LAMP and MEAN across
all major platforms. With Devilbox you
can develop standard PHP (Laravel,
Drupal, legacy code, WordPress) as well
as more frontend (Node.js, Angular, Vue.
js) apps with the ability to easily share
this dev environment or container with
your team. This methodology benefits
your workflow as well as compartmen-
talizing your code and services (Apache,
NGINX, MySQL, and others.) for
each specific project. Instead of only
working on one project on your host
machine via standard install of web and
database services, you can specify each
configuration within the respective
containers and safely move between
them without compromising the infra-
structure. Another benefit is that when
you are working on a project in a team
environment, you can distribute the
exact project container to collaborators
to ensure everyone works within the
same setup. This practice takes out the

“it works on my machine” fallacy that
creeps up so often when hunting down
bugs.

Off the shelf, or Git repo rather,
Devilbox comes with most daemons
that a majority of developers would
need. Of course, you can install any

“specific-to-your-project” software
needed once you have the basics up and
running.

Apache (2.2–2.4) and NGINX (stable,
mainline) are the go-to web servers
offered. PHP (5.2–7.3) comes along
as well as a majority of the most used
modules. Having multiple versions of
PHP at your command allows for the

ability to safely test and fix your code,
especially when moving legacy code to
a newer version of PHP. This can sepa-
rate the patching time when your team
can access brokenwebsite.dev to see
all the errors while keeping your main
repo and dev server clean of new fixed
code on workingwebsite.dev. But we
will get into that a bit later.

As far as databases are concerned we
have:

•	 MariaDB (5.5–10.3)
•	 PerconaDB (5.5–5.7)
•	 PgSQL (9.1–10.0)
•	 Redis (2.8–4.0)
•	 Memcached (1.4.21–latest)
•	 MongoDB (2.8–3.5)

MailHog (1.0–latest) and RabbitMQ
(3.6–latest) are included as additional
services if need be. Like previously
stated, this is the out-of-the-box
configuration, and while it contains a
powerhouse of tools, typically these
are all not needed together. Devilbox
has a solution for that and allows you
to pick and choose which ones you
want to enable when you sping up your
containers.

If you want to get down to the nitty-
gritty and take charge of Devilbox, you
need to step on over to the .env file. It
is where you get the play god… err, the
devil. Let us start at the “images” section.
This section is located around line #240.
Here you can comment/uncomment
out which version of each service you
would like to run on your environment.

phparch.com
http://www.thedevilbox.org

http://phpa.me/mag_subscribe

	Defensive Coding Crash Course
	Mark Niebergall

	The Devilbox and Docker
	Gunnard Engebreth

