
www.phparch.com

Renovating
Applications with
Symfony

Education Station:
Writing DRY, SOLID FOSS
OOP CRUD Code

Community Corner:
Why Soft Skills are Hard
Skills

Internal Apparatus:
Generated Singletons

Security Corner:
System Enumeration

The Workshop:
Introduction to PDF
Generation

finally{}:
25 Years of PHP

ALSO INSIDE

Symfony 4: A New Way to Develop Applications

How to Deal With Legacy Code

Can You Migrate Any Legacy Code Under One
Month?

Cultivating a Community:
Five Things I’ve Learned Running a PHP User Group

August 2019
Volume 18 - Issue 8

Join us this fall for our annual
php[world] conference. This

year marks the 25th anniversary
of PHP and we plan to celebrate

it in a big way!

WASHINGTON DC
OCT 23-24

world.phparch.com

a php[architect] guide

Discover how to secure your
applications against many of the
vulnerabilities exploited by attackers.

Security is an ongoing process not something to add
right before your app launches. In this book, you’ll
learn how to write secure PHP applications from first
principles. Why wait until your site is attacked or your
data is breached? Prevent your exposure by being aware
of the ways a malicious user might hijack your web site or
API.

Security Principles for PHP Applications is a comprehensive guide.
This book contains examples of vulnerable code side-by-side with
solutions to harden it. Organized around the 2017 OWASP Top Ten
list, topics cover include:

• Injection Attacks
• Authentication and Session Management
• Sensitive Data Exposure
• Access Control and Password Handling
• PHP Security Settings
• Cross-Site Scripting
• Logging and Monitoring
• API Protection
• Cross-Site Request Forgery
• ...and more.

Written by PHP professional Eric Mann, this book builds on his
experience in building secure, web applications with PHP.

Order Your Copy
http://phpa.me/security-principles

http://phpa.me/security-principles

44 \ August 2019 \ www.phparch.com

The Workshop

Introduction to PDF Generation
Joe Ferguson

Despite the promise of a “paperless” office, we still need to create documents that print and
render nearly-identically across devices and operating systems. PDFs have filled this niche nicely
for end-users, but if you need to generate PDFs with PHP programmatically, the options are
overwhelming. How do you choose? In this series, we’ll investigate the solutions at our disposal
and the pros and cons of each.

In early July 2019, I asked Reddit
What questions do you have about
generating PDFs w/ PHP?1. I was pleas-
antly surprised at the genuine answers
and feedback I received (as opposed
to the normal nonstop trolling Reddit
is usually known for). One comment
listed 19 different questions! Many
of the comments mention different
libraries and services, and I believe even
one of the commercial products had
a representative chime in about their
solution. While I was excited to get so
much interest from the Reddit commu-
nity, I was now a bit overwhelmed with
options. This task was suddenly bigger
than Oscar Merida saying, “I can’t get
anyone to write about this. Why don’t
you do it?” Now equipped with more
than 70 comments from internet
strangers about PDF generation, we’re
going to explore some of the more basic
options and step up in complexity with
the same goal designed for each library.
We’ll put the library through its paces to
give a short overview so you can pick a
library to try out for yourself.

PDF Files
The Portable Document Format

(PDF) was created in the early 1990s
by Adobe Systems. PDFs were added
to the desktop publishing workflow
as a way to share documents without
having to worry about what operating
system or platform other users were on.
Way before the browser wars, we had
the word processing wars. Microsoft
Word couldn’t open Corel WordPerfect

1 What questions do you have
about generating PDFs w/ PHP?:
https://phpa.me/reddit-php-pdfgen

documents and vice versa. These were
the days when “Microsoft Office” expe-
rience on a job posting was very serious,
as serious as we take our programming
languages. It also led to “WordPerfect”
based publishing shops and “Microsoft
Word” shops to denote the tooling used.
PDFs to the desktop publishing world
was essentially a mutually agreed upon
specification on how to present docu-
ments across platforms independent of
the authoring tool. Some 26 years later,
the use case is still a big deal to just
about every computer or technology
user: being able to create a document
that looks and feels the exact same way
no matter how we consume the docu-
ment, whether via browser, desktop
application, mobile email client, or any
other way you can think to display a
document to a user.

Adobe held tight control over the
PDF specifications until 2007 when
they announced the release of the full
Portable Document Format 1.7 spec-
ification to the American National
Standards Institute (ANSI). Adobe
now publishes PDF extensions; these
extensions are not part of the PDF
standards. A year after Adobe turned
over the 1.7 specification, the ISO
Technical Committee 171 published
ISO 32000-1:2008 named “Document
management—Portable document
format – Part 1: PDF 1.7.” You can view
the full spec in PDF format2. In July
2017, the ISO committee published ISO
32000-2 (PDF 2.0), the first version of
the PDF specification to be entirely
developed by the ISO Committee
process. The PDF 2.0 specification

2 PDF format: https://phpa.me/pdf-1-7-spec

allowed the deprecation of aging parts
of the original specification, as well as
the standardization of PDF subset stan-
dards. This allows for the extension of
the PDF without having to add to the
existing specification. These subsets
focus on the specific use case of PDF
publishing such as PDF/A for long
term archiving and PDF/E for Engi-
neering (Building, Manufacturing, and
Geospatial). These subsets allowed
entire industries to adopt the PDF for
their document publishing and sharing
purposes.

The reason we’re still talking about
PDFs in 2019 is that the specification
is really good when it comes to making
portable documents. The open speci-
fications allowed software vendors to
adopt PDF support into their programs
easily and quickly just about everyone
in the software world supported the
format due to the straightforward
ability to create and share these docu-
ments without having to reformat them,
or suffer through inadequate conver-
sion tools that would mangle the output.
Chances are you’re reading this article
via a PDF. It allows php[architect] to
format the magazine once, and know
it’ll be displayed the same way on every
platform (Editors note: except Microsoft
Edge’s PDF renderer, for some reason).

Think of PDFs as a container running
your content. The application runs
the same way on any server platform,
much like a magazine displays the same
way on any viewing platform. While
consuming PDFs has become quite
trivial and ordinary, creating PDFs can
be challenging.

Sam
ple

phparch.com
https://phpa.me/reddit-php-pdfgen
https://phpa.me/pdf-1-7-spec

 www.phparch.com \ August 2019 \ 45

Introduction to PDF Generation

The Workshop

Most PHP developers who work in a business servicing
customers in some way have had to write code that turns text
and graphics into a PDF file. The most common use cases
in my development career have been generating customer
receipts and invoices either to match the paper copy versions
to be filed away or maybe as the only copy of a receipt for
a company that has gone entirely digital. Nearly all ebook
publishes offer PDF as a standard option to consume the
materials. The healthcare industry also uses PDFs extensively
to store records and forms for patients to fill out. PHP has
basic PDF generation abilities via the free PDFlib3 library
which has been unmaintained since 2010. Most developers
reach for libraries to create PDF files. There are also commer-
cial software-as-a-service options for developers to use so
they completely offload this task. Depending on your needs,
you may fit into this category. Always look around to see
who’s already solved a problem before you take on writing
(and maintaining!) custom code. We don’t want to reinvent
the wheel, so we’re going to outline a somewhat basic scenario
of a PDF we need to build and investigate different options to
get us as close to our final product as we can.

The PHP documentation mentions two libraries specif-
ically to get you started generating PDF files. FPDF4, and
TCPDF5. We’re going to take a basic look at FPDF, and over
the next two installments of this series, we’ll get more and
more complex and demonstrate other libraries.

I’m going to be using Laravel because it bootstraps all
the nice frontend things for me. I don’t have to worry
about writing that code, and I can focus on PDF generat-
ing code. If you want to look over the code, you can find it
on GitHub6.

We can easily add FPDF to our application via Composer
thanks to fpdf/fpdf—Packagist7, which is a wrapper around
the primary class as shown in Output 1.

We’re going to create a new controller in our application.
If you’re following along with the repository, this code is
located in app/Http/Controllers/FpdfCreate.php. We begin by
creating a new FPDF instance and passing in the basics: orien-
tation (portrait), unit of measurements (in for inches), and
the paper size (letter). For our European friends, you could
also use mm for measurements and A4 for size. We continue
our set up by specifying the font, style, and size we want. We’ll
use Arial as our font, leave style blank (or use B for bold), and
then set our size to 14.

Before we get too ahead of ourselves, we need to call
AddPage() to create a page in our PDF file. Wouldn’t it be
silly to add content before adding a page? Now that we have

3 PDFlib: https://php.net/intro.pdf
4 FPDF: http://www.fpdf.org
5 TCPDF: https://tcpdf.org
6 GitHub: https://github.com/svpernova09/pdf-creation
7 fpdf/fpdf—Packagist: https://packagist.org/packages/fpdf/fpdf

described how the text should appear, we need to call the
Cell() method to place something on our page. The Cell()
method takes several parameters. Think of it as bootstrapping
your document at a very low level; we specify height, width,
and other parameters to describe how to place our content
on the page. In the example below, we use 4 for width, which
becomes four inches because we used in as our unit when we
called FPDF(). We’ll use .5, half an inch, for our height. We’ll
pass a string We made a PDF! as our text to place on the page.

The next parameter is the border. To get a feel for how
cells work, we’ll use LTRB which means left, top, right, bottom
border lines. The second to last parameter we need to specify
is the ln which is an indication where the current position
should go after the call to Cell() happens. The options are 0
to go to the right, 1 to go to the beginning of a new line, or
2 which is below. We’ll use 0 as we may want to add more
content later that picks up right where we left off. The last
option we specify is the alignment; we specify C, so our text
is centered in our 4-by-.5 inch cell. You can view our full
method in Listing 1.

Output 1

 1. $ composer require fpdf/fpdf
 2. Using version ^1.81 for fpdf/fpdf
 3. ./composer.json has been updated
 4. Loading composer repositories with package information
 5. Updating dependencies (including require-dev)
 6. Package operations: 1 install, 0 updates, 0 removals
 7. - Installing fpdf/fpdf (1.81.2): Downloading (100%)
 8. Writing lock file
 9. Generating optimized autoload files
10. > Illuminate\Foundation\ComposerScripts::postAutoloadDump
11. > @php artisan package:discover --ansi
12. Discovered Package: beyondcode/laravel-dump-server
13. Discovered Package: fideloper/proxy
14. Discovered Package: laravel/tinker
15. Discovered Package: nesbot/carbon
16. Discovered Package: nunomaduro/collision
17. Package manifest generated successfully.

Listing 1

 1. public function createPdf() {
 2. $pdf = new FPDF('P', 'in', 'Letter');
 3. $pdf->AddPage();
 4. $pdf->SetFont('Arial', '', 14);
 5. $pdf->Cell(
 6. 4, // width
 7. .5, //height
 8. 'We made a PDF!', // text
 9. 'LTRB', // border
10. 0, // where the current position goes after the call
11. 'C'
12.);
13.

14. return Response::make($pdf->Output(), 200, [
15. 'Content-Type' => 'application/pdf',
16.]);
17. }

Sam
ple

phparch.com
https://php.net/intro.pdf
http://www.fpdf.org
https://tcpdf.org
https://github.com/svpernova09/pdf-creation
https://packagist.org/packages/fpdf/fpdf

46 \ August 2019 \ www.phparch.com

Introduction to PDF Generation

The Workshop

Since I’m using Laravel I have access to the Response
helper class which generates a response for me. You’ll
want to ensure whatever you’re using correctly sets the
Content-Type header to application/pdf so that your
browser correctly renders the PDF.

We’ll see Figure 1 if we load up our URL in the browser: /
fpdf/create.

All of the parameters we passed to the Cell() method made
sense, but ln, which means “line break.” It dictates where the
cursor goes after the method call, which can be confusing.
We intentionally used 0 in our example to be able to continue
right where we left off. Let’s add another cell and see how
things line up:

$pdf->Cell(
 4, // width
 .5, //height
 'This Cell should be on the right', // text
 'LTRB', // border
 0, // where the current position should go after the call
 'C'
);

This added call ends up placing our new cell right next to
the first cell we created as we would expect (see Figure 2).

What if we wanted to move the cell on the right to below
our first cell? We can easily adjust the code as you can see in
Listing 2.

If we refresh our browser, we’ll see the cell which was on
the right is now below our first cell as in Figure 3.

We could also add another page and move one of our boxes
off the first page by calling AddPage() again. See Listing 3.

Now, when we refresh our browser, we can scroll down to
page two to see our second cell, shown in Figure 4.

Figure 1

Figure 2

Figure 3

Listing 2

 1. $pdf->Cell(
 2. 4, // width
 3. .5, //height
 4. 'We made a PDF!', // text
 5. 'LTRB', // border
 6. 1, // where the current position goes after the call
 7. 'C'
 8.);
 9. $pdf->Cell(
10. 4, // width
11. .5, //height
12. 'This Cell should be below', // text
13. 'LTRB', // border
14. 0, // where the current position goes after the call
15. 'C'
16.);

Listing 3

 1. <?php
 2. $pdf->Cell(
 3. 4, // width
 4. .5, //height
 5. ‘We made a PDF!’, // text
 6. 'LTRB', // border
 7. 2, // where the current position goes after the call
 8. ‘C’
 9.);
10.

11. $pdf->AddPage();
12. $pdf->Cell(
13. 4, // width
14. .5, //height
15. 'Welcome to the Second Page!', // text
16. 'LTRB', // border
17. 0, // where the current position goes after the call
18. ‘C’
19.);

Figure 4Sam
ple

phparch.com

 www.phparch.com \ August 2019 \ 47

Introduction to PDF Generation

The Workshop

The last thing we’re going to cover this month is adding
images. We can add an image to our PDF by placing the
image in an accessible folder within our application (such as
the application root, or where you store your images). Since
I’m using Laravel, I’m going to use the storage_path helper
to determine the path to my files easily. The Image() method
takes several parameters with the first being the path to the
image file itself. We’re going to skip over the next two, x and
y, which are coordinates of where the image should be placed.
By leaving these null, the image is placed where the cursor
currently exists, at the start of the document. We’ll then pass
6 in as the fourth parameter to set the image width to 6 inches.

$pdf->Image(
 storage_path() . '/app/public/world2019.png',
 null,
 null,
 '6'
);

Refreshing our browser, we can see in Figure 5 the
php[world] logo8. (Make sure you have your tickets!):

We’ve covered the basics of getting started and building
simple PDFs with PHP and FPDF. FPDF was easy to install
just like any other package via Composer, which is a big plus.
Another plus is how low level we’re working to build our PDFs.
Choosing how low level (you doing more lifting), as opposed
to a higher level (where the library does more work), is going
to be a tradeoff based on individual use cases. In many cases,
having to do low-level operations can be painful, and you
may want to skip over FPDF in favor of a higher-level library.
We’re not quite ready to take this PDF into production yet.
Next month, we’ll cover a practical scenario of PDF genera-
tion by creating receipts for customers who bought an item
from our fictitious online store.

Happy coding!

 Joe Ferguson is a PHP developer and
community organizer. He is involved with
many different technology related initiatives
in Memphis including the Memphis PHP
User group. He’s been married to his
extremely supportive and amazing wife for a
really long time and she turned him into a
crazy cat man. They live in the Memphis
suburbs with their two cats. @JoePFerguson

8 logo: https://world.phparch.com

Figure 5

php[architect] Books

https://phparch.com/books

DRM free. Available in
digital & print editions.

spl_

Joshua Thijssen is a freelance consultant, trainer and developer.
His passion lies in high-end and complex internet systems,
code optimization and server administration. His programming
skills include-but are not limited to-PHP, C, Java, and Python,
and he has experience on a wide range of operating systems.
He is a regular speaker at international conferences and speaks
about a wide variety of subjects. You can find his blog on
http://www.adayinthelifeof.nl.

a php[architect] guide

Mastering
the SPL Library

by Joshua Thijssenhttp://phparch.com

a php[architect] guide

The Standard PHP Library (SPL) has recently gained
popularity among PHP developers. With more complex
applications and more data to process, the library’s vast
functionality can make development easier and more
efficient, but the documentation for the SPL falls far behind
PHP’s core documentation.

Mastering the SPL Library - a php[architect] guide covers all
the facets of the library, including background information
where needed. Each entry is illustrated with code examples
to give you an idea of how to use it. After reading this book,
you will be ready to use the SPL interfaces, data structures,
and - of course - the iterators.

This book is perfect for those ready to begin using the SPL
library and for those already familiar with it who wish to
learn the ins and outs of its more advanced features. With its
detailed information and code examples, this book is a great
reference for all SPL users. Developers will want it on their
desks at all times.Sam
ple

phparch.com
https://twitter.com/JoePFerguson
https://world.phparch.com

http://phpa.me/mag_subscribe

	Introduction to PDF Generation
	Joe Ferguson

