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HTTP Streams Wrapper

[1] HTTP streams wrapper: http://php.net/wrappers.http

At this point, you should be reasonably well-acquainted with some of the general 
concepts involved in using an HTTP client. The next chapters review some of the 
more popular mainstream client libraries, including common use cases and the 
advantages and disadvantages of each. The client covered in this chapter is the 
HTTP streams wrapper[1].

PHP 4.3 saw the addition of the Streams extension to the core. According to the related section 
of the PHP manual, the intention was to provide “a way of generalizing file, network, data compres-
sion, and other operations which share a common set of functions and uses.” One of the concepts that 
streams introduced was the wrapper. The job of a wrapper is to define how a stream handles commu-
nications in a specific protocol or using a specific encoding. One such protocol for which a wrapper is 
available is HTTP.

The primary advantages of the HTTP streams wrapper are its ease of use and availability. Its API 
is minimal; it's easy and quick to get something simple working. The HTTP streams wrapper is part 

Chapter

3
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3. HTTP Streams Wrapper

of the PHP core; thus, it’s available in all PHP installations, as opposed to an optional extension that 
may not be, and has no other installation requirements.

The disadvantage of the HTTP streams wrapper is its minimal feature set. It gives you the ability 
to send HTTP requests without having to construct them entirely on your own (by specifying the 
body and optionally any headers you want to add) and access data in the response. That’s about it. 
The ability to debug requests is one example of a feature it does not include at the time of this writing.

The fact that the wrapper is C code is a bit of a double-edged sword. On the positive side, there is 
a significant performance difference between C code and PHP code (though it's more noticeable in a 
high load environment). On the negative side, you have to either know C or depend on the commu-
nity to deliver patches for any issues which may arise. This also applies to extensions written in C 
covered in later sections.

[2] file_get_contents(): http://php.net/file_get_contents

Simple Request and Response Handling
Here’s a simple example of the HTTP streams wrapper in action.

$response = file_get_contents('http://example.com'); 
print_r($http_response_header);

Some notes:

• You must enable the allow_url_fopen PHP configuration setting for this to work, it’s enabled in 
most environments.

• In this example, file_get_contents()[2] makes a GET request for the specified URL 
http://example.com.

• $response will contain the response body after the call to the file_get_contents() function 
completes.

• $http_response_header is implicitly populated with the HTTP response status line and headers 
after the file_get_contents() call because it uses the HTTP streams wrapper within the current 
scope.

While this example does work, it violates a core principle of good coding practices: no unexpected 
side effects. The origin of $http_response_header is not entirely obvious because PHP populates it 
implicitly. It’s also more restrictive because the variable is unavailable outside the scope containing 
the call to file_get_contents(). Here’s a better way to get access to the same data from the response 
headers.

$handle = fopen('http://example.com', 'r'); 
$response = stream_get_contents($handle); 
$meta = stream_get_meta_data($handle); 
print_r($meta['wrapper_data']);Sam
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Let’s step through this.

1. fopen() opens a connection to the URL http://example.com; the resource $handle references a 
stream for that connection.

2. stream_get_contents() reads the remaining data on the stream pointed to by the $handle 
resource into $response.

3. stream_get_meta_data() reads metadata for the stream pointed to by the $handle resource into 
$meta.

4. At this point, $meta['wrapper_data'] contains the same array as $http_response_header would 
within the current scope. You can call stream_get_metadata() with $handle in any scope in 
which the latter is available. This makes it more flexible than $http_response_header.

[3] context: http://php.net/context.http

Stream Contexts and POST Requests
Another concept introduced by streams is the context[3], which is a set of configuration options 

used in a streams operation. stream_context_create() receives an associative array of context 
options and their corresponding values and returns a context. When using the HTTP streams 
wrapper, one use of contexts is to make POST requests, as the wrapper uses the GET method by default.

Listing 3.1
 1. <?php
 2. $context = stream_context_create([
 3.    'http' => [
 4.       'method' => 'POST',
 5.       'header' => implode(
 6.          "\r\n", [
 7.             'Content-Type: application/x-www-form-urlencoded',
 8.             'Referer: http://example.com'
 9.          ]
10.       ),
11.       'content' => http_build_query([
12.          'param1' => 'value1',
13.          'param2' => 'value2'
14.       ]),
15.    ]
16. ]);
17. 
18. $response = file_get_contents(
19.    'http://example.com/process', false, $context
20. );Sam
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3. HTTP Streams Wrapper

Here is a walk-through of the example in Listing 3.1.

• 'http' is the streams wrapper used.
• 'POST' is the HTTP method of the request.
• The 'header' stream context setting references a string containing HTTP header key-value 

pairs, in this case for the Content-Type and Referer HTTP headers. The Content-Type header 
indicates the request body data is URL-encoded. If you need to set more than one custom 
header, you must separate them with a carriage return-line feed sequence ("\r\n" also known 
as a CRLF). implode()[4] is useful for this if you store key-value pairs for headers.

• http_build_query()[5] constructs the body of the request. It can also construct query strings of 
URLs for GET requests. One useful aspect is that it automatically handles encoding key-value 
pairs and delimiting them with an ampersand.

• http://example.com/process is the URL of the requested resource.
• file_get_contents()[6] executes the request using options from the context $context created 

using stream_context_create()[7].
• $response receives the body of the response returned by file_get_contents().

[4] implode(): http://php.net/implode
[5] http_build_query(): http://php.net/http_build_query
[6] file_get_contents(): http://php.net/file_get_contents
[7] stream_context_create(): http://php.net/stream_context_create

Error Handling
Before PHP 5.3.0, an HTTP streams wrapper operation resulting in an HTTP error response (i.e., 

a 4xx or 5xx status code) emits a PHP-level warning. This warning contains the HTTP version, the 
status code, and the status code description. The function calls for such operations generally return 
false as a result, and leave you without a stream resource to check for more information. Listing 3.2 
is an example of how to get what data you can.

Listing 3.2
 1. <?php
 2. function error_handler($errno, $errstr, $errfile, $errline, array $errcontext) {
 3.    // $errstr will contain something like this:
 4.    // fopen(http:_example.com/404): failed to open stream:
 5.    // HTTP request failed! HTTP/1.0 404 Not Found
 6.    if ($httperr = strstr($errstr, 'HTTP/')) {
 7.       // $httperr will contain HTTP/1.0 404 Not Found in the case
 8.       // of the above example, do something useful with that here
 9.    }
10. }
11. 
12. set_error_handler('error_handler', E_WARNING);
13. Sam
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14. // If the following statement fails, $stream will be assigned
15. // false and error_handler will be called automatically
16. $stream = fopen('http://example.com/404', 'r');
17. 
18. // If error_handler() does not terminate the script, control
19. // will be returned here once it completes its execution
20. restore_error_handler();

This situation improved somewhat in PHP 5.3 with the addition of the ignore_errors context 
setting. When you set this setting to true, PHP treats operations resulting in errors the same way as 
successful operations and emits no warnings. Listing 3.3 is an example of what it might look like.

Listing 3.3
 1. <?php
 2. $context = stream_context_create([
 3.                                     'http' => [
 4.                                        'ignore_errors' => true
 5.                                     ]
 6.                                  ]);
 7. 
 8. $stream = fopen('http://example.com/404', 'r', false, $context);
 9. 
10. // $stream will be a stream resource at this point regardless of
11. // the outcome of the operation
12. $body = stream_get_contents($stream);
13. $meta = stream_get_meta_data($stream);
14. 
15. // $meta['wrapper_data'][0] will equal something like 'HTTP/1.0 404 Not Found' 
16. // at this point, with subsequent array elements being other headers
17. $response = explode(' ', $meta['wrapper_data'][0], 3);
18. list($version, $status, $description) = $response;
19.
20. switch (substr($status, 0, 1)) {
21.    case '4':
22.    case '5':
23.       $result = false;
24.       break;
25.
26.    default:
27.       $result = true;
28. }Sam
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3. HTTP Streams Wrapper

HTTP Authentication

[8] stream_get_meta_data(): http://php.net/stream_get_meta_data

The HTTP stream wrapper has no context options for HTTP authentication credentials, but you 
can include credentials as part of the requested URL. See the example below.

$response = file_get_contents('http://username:password@example.com');

Note that credentials are not pre-encoded; the stream wrapper handles encoding transparently 
when making the request.

Also, this feature supports Basic HTTP authentication, but you must handle Digest authentication 
manually. As such, if support for Digest authentication is a desirable feature for your project, consider 
using a different client library, such as one of the others discussed in later chapters of this book.

More Options
Below are other stream context options for the HTTP streams wrapper that may prove useful.

• 'user_agent' allows you to set the user agent string to use in the operation. You can also set it 
manually by specifying a value for the User-Agent header in the 'header' context option value.

• 'max_redirects' sets the highest number of redirects that the operation processes before 
assuming the application is misbehaving and terminating the request. This option is unavailable 
in PHP versions before 5.1.0 and uses a default value of 20.

• 'follow_location' became available in PHP 5.3.4. If you set 'max_redirects' to 1, the operation 
will not process redirects, but will emit an error. Setting 'follow_location' to 0 suppresses this 
error.

• 'timeout' sets a limit on the amount of time in seconds a read operation executes before it 
terminates. It defaults to the value of the default_socket_timeout PHP configuration setting.

All other features utilizing headers are accessible by specifying request headers in the 'header' 
context option and checking either $http_response_header or the 'wrapper_data' index of the array 
returned by stream_get_meta_data()[8] for response headers.
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