
Web Scraping with PHP
Second Edition

by Matthew Turland

Sam
ple

Web Scraping with PHP
2nd Edition

by Matthew Turland

Sam
ple

Web Scraping with PHP
Contents Copyright ©2019 Matthew Turland—All Rights Reserved

Book and cover layout, design and text Copyright ©2019 musketeers.me, LLC.
and its predecessors—All Rights Reserved. Print and Digital copies available from
https://www.phparch.com/books/.

php[architect] edition published: August 2019

Print ISBN: 978-1-940111-67-4
PDF ISBN: 978-1-940111-68-1
ePub ISBN: 978-1-940111-60-8
Mobi ISBN 978-1-940111-70-4

Produced & Printed in the United States

No part of this book may be reproduced, stored in a public retrieval system, or publicly trans-
mitted in any form or by means without the prior written permission of the publisher, except in
the case of brief quotations embedded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the infor-

mation contained therein, this book is provided "as-is" and the publisher, the author(s), their distributors
and retailers, as well as all affiliated, related or subsidiary parties take no responsibility for any inaccuracy
and any and all damages caused, either directly or indirectly, by the use of such information. We have
endeavored to properly provide trademark information on all companies and products mentioned in the
book by the appropriate use of capitals. However, we cannot guarantee the accuracy of such information.

musketeers.me, the musketeers.me logo, php[architect], the php[architect] logo are trademarks or regis-
tered trademarks of musketeers.me, LLC, its assigns, partners, predecessors and successors.

All other trademarks are the property of the respective owners.

Written by
Matthew Turland

Managing Editor
Oscar Merida

Editor
Kara Ferguson

Published by
musketeers.me, LLC.
4627 University Dr
Fairfax, VA 22030 USA

240-348-5PHP (240-348-5747)
info@phparch.com
www.phparch.comSam
ple

https://www.phparch.com/books/
mailto:info%40phparch.com?subject=
http://www.phparch.com

Web Scraping with PHP, 2nd Ed. III

1. Introduction 1
Intended Audience 1
How to Read This Book 2
Web Scraping Defined 2
Applications of Web Scraping 3
Appropriate Use of Web Scraping 3
Legality of Web Scraping 3
Topics Covered 4

2. HTTP 5
Requests 6
Responses 11
Headers 12
Evolution of HTTP 19

Table of
Contents

Sam
ple

Web Scraping with PHP, 2nd Ed.IV

Table of Contents

3. HTTP Streams Wrapper 21
Simple Request and Response Handling 22
Stream Contexts and POST Requests 23
Error Handling 24
HTTP Authentication 26
More Options 26

4. cURL Extension 27
Simple Request and Response Handling 28
Contrasting GET and POST 29
Setting Options 30
Analyzing Results 31
Handling Headers 33
Debugging 33
Cookies 34
HTTP Authentication 35
Security 35
Redirection 36
Referrers 37
Content Caching 37
User Agents 38
Byte Ranges 38
DNS Caching 39
Timeouts 40
Basic Request Pooling 40
More Efficient Request Pooling 42
Libraries 44Sam

ple

Web Scraping with PHP, 2nd Ed. V

5. pecl_http Extension 45
Installation 46
GET Requests 46
POST Requests 47
Request Options 48
Handling Headers 49
Debugging 50
Timeouts 50
Content Encoding 50
Cookies 51
HTTP Authentication 52
Redirection and Referrers 52
Content Caching 53
User Agents 53
Byte Ranges 53
Request Pooling 54

6. Guzzle 55
Simple Request and Response Handling 56
POST Requests 56
Handling Headers 57
Analyzing Responses 58
Request Objects 59
Connectivity 60
Debugging 60
Cookies 61
Redirection 62
Authentication 63
Security 63Sam

ple

Web Scraping with PHP, 2nd Ed.VI

Table of Contents

Asynchronous Requests 64
Concurrent Requests 66

7. Zend Framework 67
Basic Requests 68
Responses 71
URL Handling 73
Custom Headers 73
Configuration 75
Connectivity 75
Debugging 76
Cookies 76
Redirection 80
User Agents 80
HTTP Authentication 80

8. Rolling Your Own 81
Sending Requests 81
Parsing Responses 84
Transfer-Encoding 84
Content Encoding 85
Timing 86

9. Tidy Extension 87
Validation 88
Tidy 89
Input 89
Configuration 89
Options 91Sam

ple

Web Scraping with PHP, 2nd Ed. VII

Debugging 92
Output 93

10. DOM Extension 95
Types of Parsers 96
Loading Documents 96
Tree Terminology 97
Elements and Attributes 98
Locating Nodes 98
XPath and DOMXPath 100
Absolute Addressing 100
Relative Addressing 102
Addressing Attributes 102
Unions 102
Conditions 103
Using PHP Functions 103
Resources 105

11. SimpleXML Extension 107
Loading a Document 108
Accessing Elements 108
Accessing Attributes 109
Comparing Nodes 110
DOM Interoperability 110
XPath 111Sam

ple

Web Scraping with PHP, 2nd Ed.VIII

12. XMLReader Extension 113
Loading a Document 114
Iteration 115
Nodes 115
Elements and Attributes 116
readString() Availability 118
DOM Interoperation 120
Closing Documents 120

13. CSS Selector Libraries 121
Reason to Use Them 122
Basics 122
Hierarchical Selectors 123
Basic Filters 124
Content Filters 125
Attribute Filters 125
Child Filters 126
Form Filters 127
Libraries 127

14. Symfony Libraries 131
CssSelector 131
DomCrawler 133
BrowserKit 136
Goutte 136
HttpClient 137
Panther 138Sam

ple

Web Scraping with PHP, 2nd Ed. IX

15. PCRE Extension 141
Pattern Basics 142
Anchors 142
Alternation 143
Repetition and Quantifiers 144
Subpatterns 145
Matching 145
Escaping 147
Escape Sequences 147
Modifiers 149

16. Practical Applications 151
Crawler 151
Scraper 155
Acceptance Tests 159

A. Legality of Web Scraping 165

Index 169

Sam
ple

Sam
ple

Web Scraping with PHP, 2nd Ed. 21

HTTP Streams Wrapper

[1] HTTP streams wrapper: http://php.net/wrappers.http

At this point, you should be reasonably well-acquainted with some of the general
concepts involved in using an HTTP client. The next chapters review some of the
more popular mainstream client libraries, including common use cases and the
advantages and disadvantages of each. The client covered in this chapter is the
HTTP streams wrapper[1].

PHP 4.3 saw the addition of the Streams extension to the core. According to the related section
of the PHP manual, the intention was to provide “a way of generalizing file, network, data compres-
sion, and other operations which share a common set of functions and uses.” One of the concepts that
streams introduced was the wrapper. The job of a wrapper is to define how a stream handles commu-
nications in a specific protocol or using a specific encoding. One such protocol for which a wrapper is
available is HTTP.

The primary advantages of the HTTP streams wrapper are its ease of use and availability. Its API
is minimal; it's easy and quick to get something simple working. The HTTP streams wrapper is part

Chapter

3

Sam
ple

http://php.net/wrappers.http

Web Scraping with PHP, 2nd Ed.22

3. HTTP Streams Wrapper

of the PHP core; thus, it’s available in all PHP installations, as opposed to an optional extension that
may not be, and has no other installation requirements.

The disadvantage of the HTTP streams wrapper is its minimal feature set. It gives you the ability
to send HTTP requests without having to construct them entirely on your own (by specifying the
body and optionally any headers you want to add) and access data in the response. That’s about it.
The ability to debug requests is one example of a feature it does not include at the time of this writing.

The fact that the wrapper is C code is a bit of a double-edged sword. On the positive side, there is
a significant performance difference between C code and PHP code (though it's more noticeable in a
high load environment). On the negative side, you have to either know C or depend on the commu-
nity to deliver patches for any issues which may arise. This also applies to extensions written in C
covered in later sections.

[2] file_get_contents(): http://php.net/file_get_contents

Simple Request and Response Handling
Here’s a simple example of the HTTP streams wrapper in action.

$response = file_get_contents('http://example.com');
print_r($http_response_header);

Some notes:

• You must enable the allow_url_fopen PHP configuration setting for this to work, it’s enabled in
most environments.

• In this example, file_get_contents()[2] makes a GET request for the specified URL
http://example.com.

• $response will contain the response body after the call to the file_get_contents() function
completes.

• $http_response_header is implicitly populated with the HTTP response status line and headers
after the file_get_contents() call because it uses the HTTP streams wrapper within the current
scope.

While this example does work, it violates a core principle of good coding practices: no unexpected
side effects. The origin of $http_response_header is not entirely obvious because PHP populates it
implicitly. It’s also more restrictive because the variable is unavailable outside the scope containing
the call to file_get_contents(). Here’s a better way to get access to the same data from the response
headers.

$handle = fopen('http://example.com', 'r');
$response = stream_get_contents($handle);
$meta = stream_get_meta_data($handle);
print_r($meta['wrapper_data']);Sam

ple

http://php.net/file_get_contents

Stream Contexts and POST Requests

Web Scraping with PHP, 2nd Ed. 23

Let’s step through this.

1. fopen() opens a connection to the URL http://example.com; the resource $handle references a
stream for that connection.

2. stream_get_contents() reads the remaining data on the stream pointed to by the $handle
resource into $response.

3. stream_get_meta_data() reads metadata for the stream pointed to by the $handle resource into
$meta.

4. At this point, $meta['wrapper_data'] contains the same array as $http_response_header would
within the current scope. You can call stream_get_metadata() with $handle in any scope in
which the latter is available. This makes it more flexible than $http_response_header.

[3] context: http://php.net/context.http

Stream Contexts and POST Requests
Another concept introduced by streams is the context[3], which is a set of configuration options

used in a streams operation. stream_context_create() receives an associative array of context
options and their corresponding values and returns a context. When using the HTTP streams
wrapper, one use of contexts is to make POST requests, as the wrapper uses the GET method by default.

Listing 3.1
 1. <?php
 2. $context = stream_context_create([
 3. 'http' => [
 4. 'method' => 'POST',
 5. 'header' => implode(
 6. "\r\n", [
 7. 'Content-Type: application/x-www-form-urlencoded',
 8. 'Referer: http://example.com'
 9.]
10.),
11. 'content' => http_build_query([
12. 'param1' => 'value1',
13. 'param2' => 'value2'
14.]),
15.]
16.]);
17.
18. $response = file_get_contents(
19. 'http://example.com/process', false, $context
20.);Sam

ple

http://php.net/context.http

Web Scraping with PHP, 2nd Ed.24

3. HTTP Streams Wrapper

Here is a walk-through of the example in Listing 3.1.

• 'http' is the streams wrapper used.
• 'POST' is the HTTP method of the request.
• The 'header' stream context setting references a string containing HTTP header key-value

pairs, in this case for the Content-Type and Referer HTTP headers. The Content-Type header
indicates the request body data is URL-encoded. If you need to set more than one custom
header, you must separate them with a carriage return-line feed sequence ("\r\n" also known
as a CRLF). implode()[4] is useful for this if you store key-value pairs for headers.

• http_build_query()[5] constructs the body of the request. It can also construct query strings of
URLs for GET requests. One useful aspect is that it automatically handles encoding key-value
pairs and delimiting them with an ampersand.

• http://example.com/process is the URL of the requested resource.
• file_get_contents()[6] executes the request using options from the context $context created

using stream_context_create()[7].
• $response receives the body of the response returned by file_get_contents().

[4] implode(): http://php.net/implode
[5] http_build_query(): http://php.net/http_build_query
[6] file_get_contents(): http://php.net/file_get_contents
[7] stream_context_create(): http://php.net/stream_context_create

Error Handling
Before PHP 5.3.0, an HTTP streams wrapper operation resulting in an HTTP error response (i.e.,

a 4xx or 5xx status code) emits a PHP-level warning. This warning contains the HTTP version, the
status code, and the status code description. The function calls for such operations generally return
false as a result, and leave you without a stream resource to check for more information. Listing 3.2
is an example of how to get what data you can.

Listing 3.2
 1. <?php
 2. function error_handler($errno, $errstr, $errfile, $errline, array $errcontext) {
 3. // $errstr will contain something like this:
 4. // fopen(http:_example.com/404): failed to open stream:
 5. // HTTP request failed! HTTP/1.0 404 Not Found
 6. if ($httperr = strstr($errstr, 'HTTP/')) {
 7. // $httperr will contain HTTP/1.0 404 Not Found in the case
 8. // of the above example, do something useful with that here
 9. }
10. }
11.
12. set_error_handler('error_handler', E_WARNING);
13. Sam

ple

http://php.net/implode
http://php.net/http_build_query
http://php.net/file_get_contents
http://php.net/stream_context_create

Error Handling

Web Scraping with PHP, 2nd Ed. 25

14. // If the following statement fails, $stream will be assigned
15. // false and error_handler will be called automatically
16. $stream = fopen('http://example.com/404', 'r');
17.
18. // If error_handler() does not terminate the script, control
19. // will be returned here once it completes its execution
20. restore_error_handler();

This situation improved somewhat in PHP 5.3 with the addition of the ignore_errors context
setting. When you set this setting to true, PHP treats operations resulting in errors the same way as
successful operations and emits no warnings. Listing 3.3 is an example of what it might look like.

Listing 3.3
 1. <?php
 2. $context = stream_context_create([
 3. 'http' => [
 4. 'ignore_errors' => true
 5.]
 6.]);
 7.
 8. $stream = fopen('http://example.com/404', 'r', false, $context);
 9.
10. // $stream will be a stream resource at this point regardless of
11. // the outcome of the operation
12. $body = stream_get_contents($stream);
13. $meta = stream_get_meta_data($stream);
14.
15. // $meta['wrapper_data'][0] will equal something like 'HTTP/1.0 404 Not Found'
16. // at this point, with subsequent array elements being other headers
17. $response = explode(' ', $meta['wrapper_data'][0], 3);
18. list($version, $status, $description) = $response;
19.
20. switch (substr($status, 0, 1)) {
21. case '4':
22. case '5':
23. $result = false;
24. break;
25.
26. default:
27. $result = true;
28. }Sam

ple

Web Scraping with PHP, 2nd Ed.26

3. HTTP Streams Wrapper

HTTP Authentication

[8] stream_get_meta_data(): http://php.net/stream_get_meta_data

The HTTP stream wrapper has no context options for HTTP authentication credentials, but you
can include credentials as part of the requested URL. See the example below.

$response = file_get_contents('http://username:password@example.com');

Note that credentials are not pre-encoded; the stream wrapper handles encoding transparently
when making the request.

Also, this feature supports Basic HTTP authentication, but you must handle Digest authentication
manually. As such, if support for Digest authentication is a desirable feature for your project, consider
using a different client library, such as one of the others discussed in later chapters of this book.

More Options
Below are other stream context options for the HTTP streams wrapper that may prove useful.

• 'user_agent' allows you to set the user agent string to use in the operation. You can also set it
manually by specifying a value for the User-Agent header in the 'header' context option value.

• 'max_redirects' sets the highest number of redirects that the operation processes before
assuming the application is misbehaving and terminating the request. This option is unavailable
in PHP versions before 5.1.0 and uses a default value of 20.

• 'follow_location' became available in PHP 5.3.4. If you set 'max_redirects' to 1, the operation
will not process redirects, but will emit an error. Setting 'follow_location' to 0 suppresses this
error.

• 'timeout' sets a limit on the amount of time in seconds a read operation executes before it
terminates. It defaults to the value of the default_socket_timeout PHP configuration setting.

All other features utilizing headers are accessible by specifying request headers in the 'header'
context option and checking either $http_response_header or the 'wrapper_data' index of the array
returned by stream_get_meta_data()[8] for response headers.

Sam
ple

http://php.net/stream_get_meta_data

Web Scraping with PHP, 2nd Ed. 169

Index
A
Acceptance Tests, 159–63, 167
Apache, 6, 12
ASCII, 148
authentication, 4, 6, 12, 16–19, 26, 35, 37, 52, 63,
80
 basic, 17
 credentials, 26, 35–37
 digest, 17, 19, 26
 identity, 13
 methods, 35

B
BrowserKit, 136–39

C
cache, 39, 50, 86
 content, 15, 37, 53
 internal DNS, 39, 45
Certificate Authority, 35, 63
 bundle, 63–64
 current bundle, 36, 64
chromedriver, 138, 160–62
Codeception, 159–63
Composer, 36, 64, 136–37
content encoding, 50, 85–86
Content-Type, 10, 12, 23–24, 50, 57, 59–60,
71–72
cookies, 4, 13, 34–35, 49, 51–52, 61–62, 73–74,
76–80, 160
 COOKIEFILE, 34–35
 data, 34–35, 51, 61, 76–77

 header, 13
 jar, 61
 name, 52, 61, 76
 objects, 77
 store, 51
 values, 35, 52
CSS, 122–26, 132, 141
 CSS2, 121
 CSS3, 121
 selectors, 4, 121–22, 124, 131, 133, 160, 163
Ctype Extension, 149
cURL, 27–44, 50, 52–53, 61, 63, 71, 80
 authentication, 35
 CURLOPT, 28–30, 33–41, 50
 DNS caching, 39
 Extension, 27–30, 32, 34–36, 38–40, 42, 44–46,
49, 51, 55, 75, 89
 PHP extension, 19, 27–28, 31, 35
 return value of, 33, 36
 session, 28–29
 set credentials, 35
 target server, 40

D
DateTime, 38, 158
deflate, 85
 encoding scheme, 86
DEFLATE algorithm, 86
denial-of-service attack, 86Sam
ple

Web Scraping with PHP, 2nd Ed.170

Index

DNS, 39, 50
 caching, 39–40
 lookups, 39–40, 50
 resolution, 50
 server, 40
dnsmasq, 39–40
Document Object Model, 95
DOM
 DOMDocument, 108, 132
 DOMElement, 98–99, 105, 110
 DOMNode, 97–98, 110
 interoperability, 110, 120
 warnings, 96
DomCrawler, 133–39, 154
 component, 133

E
environments
 high load, 22
 production, 40, 91
 shared hosting, 46
 threaded, 39

G
Goutte, 136–38, 156–57
 installation instructions, 136
Guzzle, 55–56, 58, 60–64, 66, 136–37, 153, 159
 installation, 56
 manual, 59, 62–63
 request option, 63
gzinflate, 85–86

H
header
 Accept-Ranges, 16
 accessing values, 13
 associative array mapping, 58
 associative array of, 71–72
 Authorization, 17, 19
 Connection, 14, 75
 Content-Encoding, 85
 Content-Length, 84
 Content-Range, 16
 Content-Type, 24, 30, 56
 cookie request, 34–35
 custom, 53, 73
 ETag, 15
 GZIP, 86
 If-Match, 53
 If-Modified-Since, 15, 38
 If-None-Match, 15, 53
 If-Unmodified-Since, 15, 37–38, 53
 Keep-Alive, 15
 Last-Modified, 15
 Location, 36–37
 range, 16, 38, 53, 72, 147–49
 range request, 16
 referer, 14, 37
 referer request, 52
 Set-Cookie, 13, 34, 51–52, 79
 single, 71–74
 Transfer-Encoding, 84
 User-Agent, 15, 26, 38
HTTP
 HTTP/1.1, 6–7, 60, 82–83
 status codes, 7, 12, 24, 59, 71–72, 153
HttpClient, 137–38Sam
ple

Web Scraping with PHP, 2nd Ed. 171

I
IP address, 31, 39

J
jQuery, 122, 124, 129

L
libraries
 guzzlehttp/promises, 64
 libcurl, 27, 31, 45–46
 phpQuery, 129
 zlib, 86
libxml, 96–97, 108, 113–15
 extension, 114
 library, 118

P
Panther, 138–39
ParagonIE, 36, 64
PCRE (Perl-Compatible Regular Expression),
141, 149–50, 159
PCRE Extension, 4, 130, 141–42, 144, 146, 148
PECL, 45–46, 48, 50–55, 75
 installer, 46
Perl-Compatible Regular Expression. See PCRE
persistent connections, 14–15, 84
PHP-FIG, 55
PHP-FPM, 34
phpQuery, 129–30
PHPUnit, 162
POST Requests, 10, 23, 47–48, 56, 69–70
protocol
 FTP, 32
 SPDY, 19
 SSL, 7, 32, 36, 63

 stateless, 13
 TCP, 81–83
 TLS, 20
PSR-7, 55
 implementations, 58
 interface, 56
 ResponseInterface, 56, 65
 StreamInterface interface, 57
PSR-18, 137

Q
query string, 8–11, 24, 30, 83–84, 135
 limits, 10
 parameters, 70
 preformatted, 29

R
redirection, 4, 12, 14, 36, 52, 62, 80
 automatic, 62
 consecutive, 14
 processing, 35, 62
referers, 23–24, 37, 49
regular expressions, 4, 84, 141–43, 147–48, 150
 basic, 142
 subpatterns, 145–46
request
 body, 11, 29, 47–48, 57, 59, 70
 body parameters, 70
 headers, 10, 26, 59
 idempotent, 10
 line, 7, 12
 method, 29–30, 47–48, 59, 68–69
 options, 48, 50–53, 56–63, 75
 sending, 83
request-response workflow, 136Sam
ple

Web Scraping with PHP, 2nd Ed.172

Index

response
 code, 33
 cookies, 76
 headers, 11, 22, 26, 33, 35, 58
 object, 50, 58, 60, 71–72, 136
 Precondition Failed, 15
RFC, 6–7, 10–11, 13, 15, 17, 19–20, 73, 80, 86
robots, 166
 exclusion, 16
 robots.txt, 155

S
security, 34–36, 63, 65
Selenium, 163
SimpleXML, 107–8, 110–11, 132
streams wrapper, 21–22, 24, 26–27, 39, 75
Symfony, 131–37, 139, 154
 BrowserKit, 159
 Console, 155
 DomCrawler, 133, 157
 project, 4, 131

T
tidy, 88–93, 96
 configurations, 90–91
 documentation, 91
 extension, 4, 87–90, 92–94, 96, 113
 library, 87–88
 output, 91
timeout, 26, 39–40, 43, 50, 60, 75, 137

U
Uniform Resource Identifiers (URI), 6–7
URL
 constant, 28

 encoding, 11, 56
user agent, 15–16, 38, 53, 57, 80
 sniffing, 15–16
 spoofing, 16
 string, 15, 26, 80
UTF-8, 12, 33, 82, 114, 150
 encoding, 91, 113

W
WWW-Authenticate header, 17–19

X
XML Parser extension, 114
XML parsers, 4, 96, 114
XMLReader Extension, 91, 107, 113–16, 118, 120
XPath, 4, 100, 102, 105, 111, 122–28, 131–32
 CSS equivalents, 121–23
 DOMXPath, 100, 104, 132
XPath expressions, 4, 100, 103–5, 108, 111, 121,
123, 132–33, 157, 163

Z
Zend Framework, 67–68, 70, 72, 74, 76, 78,
128–29
 Laminas, 67
 ZF1, 68–77, 80
 ZF2, 67–72, 74–76, 78, 80

Sam
ple

php[architect] Books
The php[architect] series of books cover topics relevant to modern PHP programming. We offer

our books in both print and digital formats. Print copy price includes free shipping to the US. Books
sold digitally are available to you DRM-free in PDF, ePub, or Mobi formats for viewing on any device
that supports these.

To view the complete selection of books and order a copy of your own, please visit:
http://phparch.com/books/.

• Security Principles for PHP
Applications
By Eric Mann
ISBN: 978-1940111612

• Docker for Developers, 2nd Edition
By Chris Tankersley
ISBN: 978-1940111568 (Print edition)

• What's Next? Professional Development
Advice
Edited by Oscar Merida
ISBN: 978-1940111513

• Functional Programing in PHP,
2nd Edition
By: Simon Holywell
ISBN: 978-1940111469

• Web Security 2016
Edited by Oscar Merida
ISBN: 978-1940111414

• Building Exceptional Sites
with WordPress & Thesis
By Peter MacIntyre
ISBN: 978-1940111315

• Integrating Web Services
with OAuth and PHP
By Matthew Frost
ISBN: 978-1940111261

• Zend Framework 1 to 2
Migration Guide
By Bart McLeod
ISBN: 978-1940111216

• XML Parsing with PHP
By John M. Stokes
ISBN: 978-1940111162

• Zend PHP 5 Certification
Study Guide, Third Edition
By Davey Shafik with Ben Ramsey
ISBN: 978-1940111100

• Mastering the SPL Library
By Joshua Thijssen
ISBN: 978-1940111001Sam
ple

http://phparch.com/books/

	Introduction
	Intended Audience
	How to Read This Book
	Web Scraping Defined
	Applications of Web Scraping
	Appropriate Use of Web Scraping
	Legality of Web Scraping
	Topics Covered

	HTTP
	Requests
	Responses
	Headers
	Evolution of HTTP

	HTTP Streams Wrapper
	Simple Request and Response Handling
	Stream Contexts and POST Requests
	Error Handling
	HTTP Authentication
	More Options

	cURL Extension
	Simple Request and Response Handling
	Contrasting GET and POST
	Setting Options
	Analyzing Results
	Handling Headers
	Debugging
	Cookies
	HTTP Authentication
	Security
	Redirection
	Referers
	Content Caching
	User Agents
	Byte Ranges
	DNS Caching
	Timeouts
	Basic Request Pooling
	More Efficient Request Pooling
	Libraries

	pecl_http Extension
	Installation
	GET Requests
	POST Requests
	Request Options
	Handling Headers
	Debugging
	Timeouts
	Content Encoding
	Cookies
	HTTP Authentication
	Redirection and Referrers
	Content Caching
	User Agents
	Byte Ranges
	Request Pooling

	Guzzle
	Simple Request and Response Handling
	POST Requests
	Handling Headers
	Analyzing Responses
	Request Objects
	Connectivity
	Debugging
	Cookies
	Redirection
	Authentication
	Security
	Asynchronous Requests
	Concurrent Requests

	Zend Framework
	Basic Requests
	Responses
	URL Handling
	Custom Headers
	Configuration
	Connectivity
	Debugging
	Cookies
	Redirection
	User Agents
	HTTP Authentication

	Rolling Your Own
	Sending Requests
	Parsing Responses
	Transfer-Encoding
	Content Encoding
	Timing

	Tidy Extension
	Validation
	Tidy
	Input
	Configuration
	Options
	Debugging
	Output

	DOM Extension
	Types of Parsers
	Loading Documents
	Tree Terminology
	Elements and Attributes
	Locating Nodes
	XPath and DOMXPath
	Absolute Addressing
	Relative Addressing
	Addressing Attributes
	Unions
	Conditions
	Using PHP Functions
	Resources

	SimpleXML Extension
	Loading a Document
	Accessing Elements
	Accessing Attributes
	Comparing Nodes
	DOM Interoperability
	XPath

	XMLReader Extension
	Loading a Document
	Iteration
	Nodes
	Elements and Attributes
	readString() Availability
	DOM Interoperation
	Closing Documents

	CSS Selector Libraries
	Reason to Use Them
	Basics
	Hierarchical Selectors
	Basic Filters
	Content Filters
	Attribute Filters
	Child Filters
	Form Filters
	Libraries

	Symfony Libraries
	CssSelector
	DomCrawler
	BrowserKit
	Goutte
	HttpClient
	Panther

	PCRE Extension
	Pattern Basics
	Anchors
	Alternation
	Repetition and Quantifiers
	Subpatterns
	Matching
	Escaping
	Escape Sequences
	Modifiers

	Practical Applications
	Crawler
	Scraper
	Acceptance Tests

	Legality of Web Scraping
	Index

