
www.phparch.com

Master of
Puppets

Education Station:
Visual Studio Code for PHP Developers

Community Corner:
On Diversity in Conference Speakers

Pragmatic PHP:
Studying Singletons

Security Corner:
Twist and Shout

The Workshop:
Real World PDF Generation

finally{}:
The State of PHP User Groups

ALSO INSIDE

End-to-End Testing Automation
With PuPHPeteer

Load Testing Your App with K6

Reformat, Refactor, Replace

September 2019
Volume 18 - Issue 9

Join us this fall for our annual
php[world] conference. This

year marks the 25th anniversary
of PHP and we plan to celebrate

it in a big way!

WASHINGTON DC
OCT 23-24

world.phparch.com

KEYNOTE SPEAKERS

Samantha
Quinoñes

Cal
Evans

a php[architect] guide

Integrating with another web site but
an API is not available?

Web scraping is a time-honored technique for collecting the
information you need from a web page. In this book, you’ll
learn the various tools and libraries available in PHP to
retrieve, parse, and extract data from HTML.

Web Scraping with PHP, 2nd Edition includes updates to
the techniques of the first edition to account for modern
PHP 7 based libraries written to more easily interact with
web markup and data.

•	 HTTP requests and responses
•	 PHP’s HTTP Stream wrapper
•	 Using the cURL extension
•	 Working with the pecl_http extension
•	 Parsing responses with Guzzle
•	 Zend Framework’s HTTP classes
•	 An overview of Symfony’s libraries for web automation
•	 Writing a client from scratch
•	 Extensions for parsing and tidying XML and HTML
•	 Using regular expressions
•	 … and more.

Written by PHP professional Matthew Turland, this book builds
on his expertise in creating custom web clients.

Available in Print, PDF, EPUB, and Mobi.

Order Your Copy
http://phpa.me/web-scraping-2ed

https://phpa.me/web-scraping-2ed

18 \ September 2019 \ www.phparch.com

Security Corner

Twist and Shout
Eric Mann

Most self-taught developers in our industry learn to leverage an API long before they
spend time learning lower-level coding patterns. This experience isn’t necessarily
a bad thing. All the same, it’s important to take some time to dig deeper and better
understand the tools and technologies at the core of our trade.

Computers and digital technology,
in general, are highly deterministic.
Provide a specific set of inputs to an
algorithm, interface, or system, and
you’ll always get a reliable, predictable
output in return. It’s this determinism
that makes computers so well suited
for rote tasks and routine operations.
However, this same determinism can
also be a weakness—particularly in the
realm of security.

A calculator that can’t reliably or
predictably solve arithmetic is useless.
A token or identity verification service
that issues predictable session identi-
fiers to authenticating parties, however,
is also useless. Said another way, we
don’t want PHP session IDs to be auto-
matically incrementing integer values;
otherwise, an attacker could easily
predict and potentially hijack your users’
otherwise secure data. Computers are
deterministic by nature, so we need to
leverage purpose-built random number
generators to introduce unpredict-
ability into the system.

Psuedo-Random Number
Generators (PRNG)

When programming, most random
number generators aren’t truly random.
They’re based on specific algorithms
which produce patterns that are
very difficult, but not impossible to
reproduce. These generators are “pseu-
do-random” and help provide a level of
non-determinism our applications can
leverage.

There’s an entire field in computer
science focused on developing genu-
inely random systems and tests to verify
the randomness of anything intended

to be random. For most purposes, pseu-
do-random systems are usually random
enough.

Truly secure applications should
leverage a cryptographically secure
pseudo-random number generator
(CSPRNG). A cryptographically
secure system is one that passes
rigorous statistical tests and is
highly resistant to common forms
of statistical attack. Both the
random_bytes() and random_int()
functions introduced in PHP 71
are considered cryptographically
secure. You should use one of these
functions by default anywhere
you need randomness in your
application. Older functions like
mt_rand() (discussed in this article)
served a purpose in older versions
of PHP, but you should not use
them unless you have a legitimate
reason to do so in a legacy applica-
tion. Even if, for some reason, you
are still running PHP 5 and need a
CSPRNG, the paragonie/random_
compat2 package provides the same
functionality by way of a polyfill.

A PRNG algorithm typically starts
with a single seed, then generates an
infinite (or at least very long) series
of seemingly random numbers from
that seed. The advantages of such an
algorithm are that they’re fast, easy to
implement, and generate a determin-
istic sequence of numbers each time.

1	 introduced in PHP 7:
https://php.net/book.csprng.php
2	 paragonie/random_compat:
https://phpa.me/random_compat

Start with the same seed, and you’ll
always get the same pseudo-random
sequence back. The most significant
disadvantage of these algorithms is
that it’s easy to get the implementa-
tion wrong. A second disadvantage is,
given a seed, you’ll always get the same
sequence of numbers back each time.

The algorithm’s advantage—deter-
ministic sequence generation—is also
a drawback; we’ll come back to this in
a bit.

One of the most widely-used PRNGs
in computer science is the Mersenne
Twister3, developed in 1997. It’s the “mt”
in PHP’s mt_rand() function.

Merssene Twister
In a nutshell, PRNGs follow a pretty

specific pattern4:
1.	 Initialize the state of the system

from a specific seed.
2.	 Use a one-way function f to output

a random number from that state.
3.	 Use a one-way function g to mutate

the state.
4.	 Repeat steps 2-3 for every subse-

quent request of a random number.
The Mersenne Twister is a bit

different. It still uses a seed, keeps track
of state, and outputs random numbers
but doesn’t use one-way functions and
the state is larger than a single number.
The outline for the Merssene Twister is:
1.	 Initialize the state of the system

from a specific seed.

3	 the Mersenne Twister:
https://phpa.me/wikip-mersenne-twister
4	 specific pattern:
https://phpa.me/cryptologie-mersennes

Sam
ple

phparch.com
https://php.net/book.csprng.php
https://phpa.me/random_compat
https://phpa.me/wikip-mersenne-twister
https://phpa.me/cryptologie-mersennes

 www.phparch.com \ September 2019 \ 19

Twist and Shout

Security Corner

2.	 Twist the state (this would be the f above).
3.	 Temper the state (this would be g) to return a random

number.
4.	 Repeat steps 2-3 for every subsequent request.

One key difference between the Merssene Twist and other
PRNGs is the state isn’t a single number; it’s an array of 624
numbers. Each iteration of the algorithm could produce 624
distinct random numbers rather than a single one!

Let’s work through each step, in turn, to see how the algo-
rithm looks in userland PHP.

Step 1. Initialize
Given a seed, we need to initialize an array of 624 integers.

We can pick any seed—PHP defaults to the current Unix
timestamp multiplied by the process ID in an attempt to
provide a somewhat “random” seed which differs between
environments. We need to filter our seed to ensure it’s only
32 bits, then use a magic initialization constant5 and some
well-known bit arithmetic6 to initialize our state container as
in Listing 1.

5	 magic initialization constant:
https://phpa.me/cpp-mersenne-psuedo
6	 well-known bit arithmetic: https://phpa.me/wikip-mersene-engine

Listing 1

 1. <?php
 2.

 3. class MT_Rand
 4. {
 5. private $state = [];
 6.

 7. public function __construct(?int $seed = null) {
 8. $seed = $seed ?? time();
 9.

10. $this->state = [$seed & 0xffffffff];
11.

12. foreach (range(1, 624) as $i) {
13. $this->state[$i] = (
14. (
15. (0x6c078965
16. * ($this->state[$i - 1]
17. ^ ($this->state[$i - 1] >> 30))
18.)
19. + $i)
20.) & 0xffffffff;
21. }
22. }
23.

24. // ...

Sam
ple

phparch.com
https://phpa.me/cpp-mersenne-psuedo
https://phpa.me/wikip-mersene-engine

20 \ September 2019 \ www.phparch.com

Twist and Shout
Security Corner

Step 2. Twist
At this point, we have a 624-element array containing our

initial state. Given the same seed, this initializes the same
array every time. Before we can use it, though, we need to
mutate the array with the twist() algorithm (See Listing 2).

Step 3. Temper
The almost-final step, shown in Listing 3, is to “temper”7

the transformation created by the twist operation above. This
tempering helps to “compensate for the reduced dimension-
ality of ”8 the distribution of numbers in our state array and
render each subsequent iteration unpredictable.

7 "temper": https://phpa.me/wikip-tempered-rep
8 “compensate for the reduced dimensionality of ”:

https://phpa.me/wikip-mersenne-algo

Step 4. Output
Once we’ve initialized, twisted, and tempered, we can return

the final output as the next random number in our series. The
PHP implementation9 explicitly confirms with the reference
implementation in mt19937ar.c and performs a right-shift to
return a 31-bit integer. If we want to match the same, then our
entire operation resembles Listing 4.

To verify our implementation, we can wire all of the above
scripts together and compare directly with PHP’s mt_rand().
The trick is to set the same seed value for each run as in
Listing 5.

If you execute the above at the command line, you’ll see the
contents of Output 1.

9	 PHP implementation: https://phpa.me/php-src-mt-rand

Listing 2

 1. private function twist() {
 2. foreach (range(0, 624) as $i) {
 3. $y = (($this->state[$i] & 0x80000000)
 4. + ($this->state[($i + 1) % 624] & 0x7fffffff))
 5. & 0xffffffff;
 6.

 7. $this->state[$i] = (
 8. $this->state[($i + 397) % 624] ̂ ($y >> 1)
 9.) & 0xffffffff;
10.

11. if (($y % 2) == 1) {
12. $this->state[$i] = ($this->state[$i] ̂ 0x9908b0df)
13. & 0xffffffff;
14. }
15. }
16. }

Listing 3

 1. function temper() {
 2. static $index = 0;
 3.

 4. if ($index == 0) {
 5. $this->twist();
 6. }
 7.

 8. $y = $this->state[$index];
 9. $y = ($y ^ ($y >> 11)) & 0xffffffff;
10. $y = ($y ^ (($y << 7) & 0x9d2c5680)) & 0xffffffff;
11. $y = ($y ^ (($y << 15) & 0xefc60000)) & 0xffffffff;
12. $y = ($y ^ ($y >> 18)) & 0xffffffff;
13.

14. $index = ($index + 1) % 624;
15.

16. return $y;
17. }

Listing 4

 1. public function __invoke() {
 2. $random = $this->temper();
 3. return ($random >> 1) & 0x7fffffff;
 4. }
 5.

 6. } // end of class
 7.

 8. $seed = 12345;
 9. $rand = new MT_Rand($seed);
10. $random = $rand();

Listing 5

 1. <?php
 2. // Our series
 3. $rand = new MT_Rand(42);
 4. echo '---- Our implementation ----' . PHP_EOL;
 5. echo $rand() . PHP_EOL;
 6. echo $rand() . PHP_EOL;
 7. echo $rand() . PHP_EOL;
 8.

 9. echo '---- PHP mt_rand() ----' . PHP_EOL;
10. mt_srand(42); // sets the seed
11. echo mt_rand() . PHP_EOL;
12. echo mt_rand() . PHP_EOL;
13. echo mt_rand() . PHP_EOL;

Output 1

 1. $ php mt_rand.php
 2. ---- Our implementation ----
 3. 804318771
 4. 1710563033
 5. 2041643438
 6. ---- PHP mt_rand() ----
 7. 804318771
 8. 1710563033
 9. 2041643438

Sam
ple

phparch.com
https://phpa.me/wikip-tempered-rep
https://phpa.me/wikip-mersenne-algo
https://phpa.me/php-src-mt-rand

 www.phparch.com \ September 2019 \ 21

Twist and Shout

Security Corner

Both our userland implementation above and the default
PHP implementation of the Mersenne Twister generate
the same pseudo-random series given the same seed. This
property is useful for testing purposes or when you need a
predictable but seemingly random series. Unfortunately, this
consistency is one of the indicators of this system’s inherent
weakness.

Weaknesses In Implementation
Neither the “twist” nor “temper” operations are one-way

functions. If you know the output of the system, you can
“untemper” it to return to the raw state, then “untwist” the
state to get to a previous step. Go back far enough, and you can
even recover the initial seed. Since this Merssene Twist imple-
mentation leverages a 624-element internal state, capturing
624 subsequent outputs of the PRNG gives an attacker suffi-
cient information to walk back through the algorithm and
effectively break the system!

Yet all is not perfect in terms of non-predictability. The
MT19937 algorithm keeps track of its state in 624 32-bit
values. If an attacker were able to gather 624 sequential
values, then the entire sequence—forward and back-
ward—could be reverse-engineered. source10Similarly,
knowing exactly how the PRNG is seeded gives an
attacker a good idea of where to start with an attack by
guessing the seed and checking the RNG’s output. If
you fail to provide a seed, the algorithm will seed itself11
with an integer based on the PHP process’ ID and the
current UNIX time in seconds.

Again, the deterministic nature of the computer makes
it reasonably straight forward for an attacker to brute force
their way to a root value. Once an attacker discovers a seed,
they can predict every “random” number your system uses
moving forward.

The Mersenne Twister is a handy algorithm for some things
internal to your application that need to seem random but
for which true randomness is not a strict requirement. If you
need true randomness, instead use a cryptographically secure
PRNG like random_bytes()12 or random_int()13.

10	 source: https://phpa.me/science-direct-mt
11	 seed itself: https://phpa.me/php-src-php-rand
12	 random_bytes(): https://php.net/random-bytes
13	 random_int(): https://php.net/random-int

Never Roll Your Own Crypto!
Now we’re to the part that includes shouting. It’s a critical

point, so lean in and ensure you’re listening.
Never. Roll. Your. Own. Cryptography.
It is incredibly important you fully understand the risk asso-

ciated with designing or building your cryptographic system.
It’s vital you work with the experts who understand the proper
implementations of the system you need to use, and even
experts make mistakes. The original PHP implementation of
mt_rand() actually had a typo14 that rendered it incompatible
with the canonical mt19937 reference implementation15 of
the Mersenne Twister. This bug has since been fixed, but the
point that even the experts can get it wrong should be enough.

Your team should fully understand the inner workings of
the libraries, tools, and technologies upon which your project
stands. Knowing the strengths and limitations of these more
primitive implementations helps your team write better,
more stable software. Leverage expertise when and where
possible—let the cryptography experts write the crypto while
your in-house application experts write the application. This
domain-specific focus will undeniably lead to better deliver-
ables.

 Eric is a seasoned web developer experi-
enced with multiple languages and platforms.
He’s been working with PHP for more than a
decade and focuses his time on helping
developers get started and learn new skills
with their tech of choice. You can reach out
to him directly via Twitter: @EricMann

14	 actually had a typo: https://bugs.php.net/bug.php?id=71152
15	 mt19937 reference implementation: https://phpa.me/cpp-mt19937

Related Reading

•	 Security Corner: Adventures in Hashing
by Eric Mann, December 2018.
https://phpa.me/security-corner-dec-2018

•	 Cryptography Best Practices in PHP
by Enrico Zimuel, May 2017.
http://phparch.com/magazine/2017-2/may

•	 Implementing Cryptography
by Edward Barnard, July 2016.
 http://phparch.com/magazine/2016-2/julySam
ple

phparch.com
https://phpa.me/science-direct-mt
https://phpa.me/php-src-php-rand
https://php.net/random-bytes
https://php.net/random-int
https://twitter.com/EricMann
https://bugs.php.net/bug.php?id=71152
https://phpa.me/cpp-mt19937
https://phpa.me/security-corner-dec-2018
http://phparch.com/magazine/2017-2/may
http://phparch.com/magazine/2016-2/july

http://phpa.me/mag_subscribe

	Twist and Shout
	Eric Mann

