
www.phparch.com

Education Station:
Overriding Composer

Community Corner:
Top Five Tips for Successful
Speaking

Pragmatic PHP:
Testing Singletons

Security Corner:
Crossing the Streams

The Workshop:
What’s New in Laravel 6

finally{}:
Dark Matter Developers

AL
SO

 IN
SI

D
E

Practical Static Analysis

Building Your First WordPress Plugin

DDoS Attacks:
Threat Landscape and
Defensive Countermeasures

October 2019
Volume 18 - Issue 10

Oscar
Free Sample

Join us this fall for our annual
php[world] conference. This

year marks the 25th anniversary
of PHP and we plan to celebrate

it in a big way!

WASHINGTON DC
OCT 23-24

world.phparch.com

KEYNOTE SPEAKERS

Samantha
Quinoñes

Cal
Evans

a php[architect] guide

Integrating with another web site but
an API is not available?

Web scraping is a time-honored technique for collecting the
information you need from a web page. In this book, you’ll
learn the various tools and libraries available in PHP to
retrieve, parse, and extract data from HTML.

Web Scraping with PHP, 2nd Edition includes updates to
the techniques of the first edition to account for modern
PHP 7 based libraries written to more easily interact with
web markup and data.

• HTTP requests and responses
• PHP’s HTTP Stream wrapper
• Using the cURL extension
• Working with the pecl_http extension
• Parsing responses with Guzzle
• Zend Framework’s HTTP classes
• An overview of Symfony’s libraries for web automation
• Writing a client from scratch
• Extensions for parsing and tidying XML and HTML
• Using regular expressions
• … and more.

Written by PHP professional Matthew Turland, this book builds
on his expertise in creating custom web clients.

Available in Print, PDF, EPUB, and Mobi.

Order Your Copy
http://phpa.me/web-scraping-2ed

https://phpa.me/web-scraping-2ed

12 \ October 2019 \ www.phparch.com

FEATURE

Building Your First WordPress Plugin
David Wolfpaw

For many, working on a WordPress theme or plugin is there first foray into PHP
development. When doing so, there are many ways to do things, but in the long run,
you’re better off following WordPress’s conventions and idioms. In this article, we’ll go
through how to structure and write a plugin from scratch, insert our code with the proper
hooks, and leverage the subsystems WordPress provides for storing configuration settings,
declaring plugin metadata, and outputting HTML.

Getting Set Up

The WordPress Developer Handbook
We’re going to reference the WordPress Developer Hand-

book frequently while working on this plugin. I wouldn’t
expect anyone to remember all of the parameters that exist for
the thousands of hooks, filters, actions, and functions existing

in WordPress. The handbook is a useful guide providing that
information and more.

By way of example, let’s take a look at the get_the_title()1
reference. The code reference is broken down the same on
each page as in Figure 1.

First, there is a description of what the function does. In
this case, it lets us know the title of a post is retrieved, and
that there are certain conditions where the word “Protected”
or “Private” appears before the title.

Next, the parameters for the function are listed. These are
the pieces of information you can pass along with it to get
the response you want. For get_the_title() there is only one
parameter, $post, which is optional. If you don’t supply it,
WordPress uses the global value for that variable. Most func-
tions, in and out of WordPress, have parameters that would
be passed to them to modify the function output.

After that, the handbook shows what kind of data the func-
tion returns, where the code lives in WordPress if you want to
examine how it works, when it was modified, and what other
functions use it. You can also see user-contributed notes,
which often give examples of how to use the function and any
gotchas that exist.

Set Up a Development Environment
Setting up a development environment is a large enough

project that it’s outside of the scope of this tutorial. Multiple
tools can help get you set up with a development environment
for WordPress. I usually suggest those just getting started to
try MAMP2, Local by Flywheel3, or ServerPress4. There are
plenty of ways to set up a WordPress site to develop with,
and all that matters is that you can read and write files to the
server, as well as make changes to the database.

1 get_the_title(): https://phpa.me/wp-get-the-title
2 MAMP: https://www.mamp.info
3 Local by Flywheel: https://localbyflywheel.com/
4 ServerPress: https://serverpress.com

Figure 1

Sam
ple

phparch.com
https://phpa.me/wp-get-the-title
https://www.mamp.info
https://localbyflywheel.com/
https://serverpress.com

 www.phparch.com \ October 2019 \ 13

Building Your First WordPress Plugin

Building the Plugin

Creating a Directory And Main
File

Your plugin should exist in its direc-
tory on your site. This folder is where
all of the PHP files which make up the
plugin live, as well as any JavaScript,
CSS stylesheets, images, and other
assets for your plugin.

The root WordPress directory has
three sub-folders: wp-admin, wp-content,
and wp-includes. We’ll be focusing
on wp-content, since that’s where
user-managed files come into play, like
themes and plugins. Within the wp-con-
tent directory there is a folder named
plugins, which is where WordPress
loads plugins from (Figure 2). Within
that directory, we’ll be creating our
folder.

Naming Your Directory And Main Plugin
File

Conventions dictate you only use
lowercase alpha characters for the
name of your directory, with hyphens
to separate words for readability if you
so choose. This convention comes from
historical standards of case-sensitive
filesystems. The main thing you need
to be sure of is that your directory
name does not contain spaces or any
other special characters. arch-notifi-

cation-bar is a valid directory name.
php[arch] Notification Bar is not.
Following these conventions helps
avoid headaches later on.

Within that directory, you’ll be
creating a PHP file that loads your
plugin. This file can be index.php, but
WordPress standards suggest using the

same name as your directory. To follow
that standard, we’ll create a file in our
plugin directory called arch-notifica-
tion-bar.php. This file is the first file that
loads for our plugin, and in our case is
where we’ll be putting the majority of
our code. It could instead function as
an autoloader for other PHP libraries,
or a conditional loader of other files,
but we’ll keep it simple for now.

Adding Header Comments to Describe
Your Plugin

In our newly created PHP file, we’re
going to add a plugin header. WordPress
uses specific plugin header comments
in PHP to denote parts of a plugin.
Only one file in your plugin folder
should have plugin header comments.
The following is an example header for
this plugin, which we’ll walk through
line by line. If you don’t see your plugin
in the WordPress dashboard, start by
checking these header comments and
ensure they are formatted correctly. See
Listing 1 for an example.

The first header comment is Plugin
Name, which is the text which displays on
the admin dashboard of the site on the
plugins page. This comment is where
you’d put the more human-readable
friendly name for your plugin, which in
our case is php[arch] Notification Bar.
It is the only required header comment
for your plugin to have to function.

Following the plugin name are all
optional header comments, though
some of them are required if you want
to upload your plugin to the wordpress.
org plugin repository. These include a

unique URL for your plugin (usually
a sales or information page about that
plugin you maintain), a description of
the plugin, the version number, author
name and URL, license and URL, text
domain, and text domain path.

If your plugin has multiple authors,
you can list multiple names, separated
by a comma. Your Author name links to
the Author URI you supply. In this case, I
used my personal site, while the Plugin
URI links to an internal page on that site
devoted to plugins.

We’ll look at the Text Domain for your
plugin a bit more when we start adding
translatable text to it. It is a unique slug
your plugin uses to denote text that
can be translated to make your plugin
usable in different languages. The
Domain Path is a relative directory that
contains any translation files for your
plugin. In this case, we’re denoting /
arch-notification-bar/languages as that
directory.

All of the above information displays
with the plugin name on the plugin
admin page. It is not used to populate
the plugin information in the word-
press.org plugin repository. That is
instead done through a separate README.
md markdown file.

Seeing Your Plugin In the Dashboard
Assuming your plugin folder and file

exist in the wp-content/plugins direc-
tory on your site, you should be able
to navigate to the “Installed Plugins”
page and see your plugin. The following
screenshot shows my plugin with the
name, description, my name linked to

Figure 2 Listing 1

 1. <?php
 2. /*
 3. * Plugin Name: php[arch] Notification Bar
 4. * Plugin URI: https://davidwolfpaw.com/plugins
 5. * Description: Display a notification for visitors on the frontend of your site!
 6. * Version: 1.0
 7. * Author: David Wolfpaw
 8. * Author URI: https://davidwolfpaw.com/
 9. * License: GPL v3 or later
10. * License URI: https://www.gnu.org/licenses/gpl-3.0.html
11. * Text Domain: arch-wnb
12. * Domain Path: /languages
13. */

Sam
ple

phparch.com

14 \ October 2019 \ www.phparch.com

Building Your First WordPress Plugin

my site, and the text “Visit plugin site” linked to the plugin
URL that I added to my header comments. The plugin back-
ground is white, indicating the plugin is not active on the site
(Figure 3).

When the plugin is activated, the background turns blue
to give a visual indication of its active status as you can see
in Figure 4.

Now that we’ve activated our plugin, it’s ready to begin
development. Any changes we make to our plugin are now
visible on our site depending on where we’ve written code to
appear. Up next, we’ll render a settings page for our plugin as
well as a link under the “Settings” header in the dashboard
toolbar which appears on the left when logged in.

Rendering the Backend of the Plugin
Often, you’ll have some options or settings for your plugin

for the end-user. In our case, we’re going to have a text input
that accepts HTML for the content of our notification bar.
We’re also going to have two options that the site administrator
can toggle for display: whether the notification bar shows at
the top or bottom of the site or not at all, and whether the
bar is sticky or not on scroll. These are going to be done on a
settings page, using the Settings API. This plugin would also
be suitable to use the Customizer API on, but we’ll focus on
one method for now.

WordPress Hooks
Most of the code we add to our plugin is going to refer-

ence a WordPress hook. Hooks are points in the code which
let you insert your code while WordPress is running. As an
example, a hook called wp_head exists in the <head> tag when
WordPress renders a page to allow you to include your meta
tags, scripts, and links.

WordPress has hundreds of such hooks built-in for you to
make use of at various points in the code. Many plugins and
themes offer hooks of their own as well, so you can extend
them for your needs. As examples, the Genesis theme has
before and after content hooks to add custom HTML, and

WooCommerce offers hooks to allow you to modify the
content of the shopping cart.

The developer documentation has a comprehensive list of
WordPress hooks5.

WordPress Actions and Filters
Having a hook lets you inject your code. Actions and filters

are how we use that placement. At their most basic, actions
are bits of code that run when something else happens. This
could be one of the examples above or something else like
inserting inline scripts into the footer of a page.

Filters take the output of something that already happened
and modify it. An example would be taking the title of a post
and modifying it before it displays in the browser to capitalize
all words. You aren’t changing the value of the title in the
database, just how it looks to someone visiting the site.

5 WordPress hooks: https://phpa.me/wordpress-hooks

Figure 3 Figure 4

Listing 2

 1. <?php
 2. /**
 3. * Creates a link to the settings page under the WordPress
 4. * Settings in the dashboard
 5. */
 6. add_action('admin_menu', 'wnb_settings_page');
 7. function wnb_settings_page() {
 8. add_submenu_page(
 9. 'options-general.php',
10. __('Notifications Bar', 'arch-wnb'),
11. __('Notifications Bar', 'arch-wnb'),
12. 'manage_options',
13. 'wnb_notifications',
14. 'wnb_render_settings_page'
15.);
16. }Sam
ple

phparch.com
https://phpa.me/wordpress-hooks

 www.phparch.com \ October 2019 \ 15

Building Your First WordPress Plugin

Putting It Together for Our
Plugin

Add a Menu Item for a Settings
Page

We’re going to use the hook admin_
menu to add our settings page link to
our dashboard menu (Listing 2). We
use the function add_action() to call
our own function on that hook, which
we’re naming wnb_settings_page(). The
prefix of wnb_ we’re adding is a name-
space that we’ve created to limit the
potential of another function also called
settings_page() that could be running
on our site. Using object-oriented PHP
is another way to avoid this issue, but
is a bit out of the scope of this tutorial.

If you’d like an overview of object-ori-
ented PHP in WordPress, Carl
Alexander6 and Tom McFarlin7 both
have useful free guides and articles to
get you started.

You can see the callback that is added
to add_action above matches the name
of the function we wrote. In our case,
this callable is a string referencing a
function we’ve created, but it could also
be an anonymous function or a call to a
static method in a class.

That function, in turn, uses a built-in
WordPress function, add_submenu_

page(), which is fairly descriptive: it
adds a new page as a submenu item
below one of the main menu items in
the dashboard.

The arguments that we’re using for
that function are all documented in the
WordPress Developer Handbook for
add_submenu_page()8

Render a Settings Page
We’ve created a link to our menu

page under the Settings menu. If you
click on that link though, you’ll see the
page that loads has a PHP error because
we haven’t defined the settings page

6 Carl Alexander:
https://phpa.me/alexander-discover-oop
7 Tom McFarlin:
https://phpa.me/mcfarlin-oop-wordpress
8 add_submenu_page():
https://phpa.me/wp-add-submenu-page

itself. In the wnb_settings_page() func-
tion we gave the callback parameter of
wnb_render_settings_page, which tells
WordPress the function that we should
look for to load the content of the
settings page is wnb_render_settings_
page().

Now we’re going to create that page
with the code in Listing 3, which we
can add to the same file with the menu
function.

We created a new function, and in
that function, we echoed the HTML we
want to output. WordPress takes care
of capturing that output and passing
it on to other filters as needed. The div
with the class of .wrap is one WordPress
already uses in admin stylesheets, so we
can use some built-in styles. Doing so
allows us to avoid having to write code
to style our page, as well as lets us keep
the same user experience as the rest of
the site. Similarly, the heading and form
elements are styled with default Word-
Press styles, saving even more time and
code.

The form element has a method of
post, which means the information in
the form is sent to the server, and the
page updates when submitted. The
action of options.php means we’ll be
brought back to this same page on
submit.

Within our form, we’re using three
built-in WordPress functions. First,
settings_fields('wnb_settings') lets
the page know the fields we’re regis-
tering in the next steps are used on this
page. Second, do_settings_sections(

'wnb_settings') will create the form
inputs HTML. Finally, submit_button()
creates the submit button for our form,
and handles ensuring it takes the proper
actions and is styled correctly.

Create Settings Sections And
Fields

Now that we’ve created our settings
page and built a form, we need to popu-
late that form with fields. We’re going to
use two field types on this form: a text
input and several radio button groups.
I’m going to use callbacks to generate

Listing 3

 1. /**
 2. * Creates the settings page
 3. */
 4. function wnb_render_settings_page() {
 5. ?>
 6. <!-- Create a header in the default WordPress 'wrap' container -->
 7. <div class="wrap">
 8.

 9. <h2><?php esc_html_e('Notification Bar Settings',
10. 'arch-wnb'); ?></h2>
11.

12. <form method="post" action="options.php">
13.

14. <?php
15. // Get plugin settings to display in the form
16. settings_fields('wnb_settings');
17. do_settings_sections('wnb_settings');
18. // Form submit button
19. submit_button();
20. ?>
21.

22. </form>
23.

24. </div><!-- /.wrap -->
25. <?php
26. }

Sam
ple

phparch.com
https://phpa.me/alexander-discover-oop
https://phpa.me/mcfarlin-oop-wordpress
https://phpa.me/wp-add-submenu-page

16 \ October 2019 \ www.phparch.com

Building Your First WordPress Plugin

those fields, so we can easily add or
modify fields over time without having
to update the HTML form inputs. You
could write each field separately if
preferred.

Take the code in Listing 4 and place
it in the same file we’ve already been
writing to. It doesn’t matter if this goes
above or below the other pieces of code
we’ve added because we’re using func-
tional, as opposed to procedural PHP.
We’re calling functions in this file when
we want them to run, as opposed to
processing the whole file step-by-step.

Quite a few things are going on above,
so we’ll step through them one by one.
First, we’re creating our function, wnb_
initialize_settings() and placing it on
the admin_init hook, so that this loads
at the start of administrative pages on
the backend dashboard of the site. In
that function we’re using the following

built-in WordPress functions as part
of the Settings API: add_settings_

section(), add_settings_field(), and
register_setting().

All of our inputs need to go into a
settings section. This section groups
fields you want to be connected in some
way, like if you have a settings page with
multiple tabs of fields and want each tab
to be able to function separately. Alter-
natively, maybe you have a social media
plugin and want a section of settings
for Twitter, a section for Mastodon,
and a section for Instagram. This UI
pattern is generally for organizational
purposes, and in our case, we’re going
to use one section for them all, which
I’ve called general_section. Note that
we’ve made a translatable string for the
title of the settings section, provided a
callback of general_settings_callback
to give a header to this section (which

is redundant in our case, but a required
parameter of this function), and finally
made a slug for a group of settings with
wnb_settings.

Up next we’re using add_settings_
field() three times to add our text input
and two radio inputs. We first give a
unique slug for each input, which is
how we’ll later reference them on the
frontend. We then add a translatable
string which describes what it does to
display while editing settings, set the
callback for whatever type of input
that we’re using (we’ll get to this in the
next step), tell it that our input goes on
the wnb_settings page in the general_
section section, and pass an array of
data about the specific input to our
callback function that generates those
inputs.

Finally, we’re registering our field with
register_setting() so it can be written

Listing 4

 1. /**
 2. * Creates settings for the plugin
 3. */
 4. add_action('admin_init', 'wnb_initialize_settings');
 5. function wnb_initialize_settings() {
 6. add_settings_section(
 7. 'general_section',
 8. __('General Settings', 'arch-wnb'),
 9. 'general_settings_callback',
10. 'wnb_settings'
11.);
12. add_settings_field(
13. 'notification_text',
14. __('Notification Text', 'arch-wnb'),
15. 'text_input_callback',
16. 'wnb_settings',
17. 'general_section',
18. [
19. 'label_for' => 'notification_text',
20. 'option_group' => 'wnb_settings',
21. 'option_id' => 'notification_text',
22.]
23.);
24. add_settings_field(
25. 'display_location',
26. __('Where will the notification bar display?', 'arch-wnb'),
27. 'radio_input_callback',
28. 'wnb_settings',
29. 'general_section',
30. [
31. 'label_for' => 'display_location',
32. 'option_group' => 'wnb_settings',
33. 'option_id' => 'display_location',
34. 'option_description' => 'Display notification bar on
 bottom of the site',
35. 'radio_options' => [
36. 'display_none' => 'Do not display notification bar',

37. 'display_top' => 'Display notification bar on the top
 of the site',
38. 'display_bottom' => 'Display notification bar on the
 bottom of the site',
39.],
40.]
41.);
42. add_settings_field(
43. 'display_sticky',
44. __('Will the notificaton bar be sticky?', 'arch-wnb'),
45. 'radio_input_callback',
46. 'wnb_settings',
47. 'general_section',
48. [
49. 'label_for' => 'display_sticky',
50. 'option_group' => 'wnb_settings',
51. 'option_id' => 'display_sticky',
52. 'option_description' => 'Make display sticky or not',
53. 'radio_options' => [
54. 'display_sticky' => 'Make the notification bar sticky',
55. 'display_relative' => 'Do not make the notification
 bar sticky',
56.],
57.]
58.);
59. register_setting(
60. 'wnb_settings',
61. 'wnb_settings'
62.);
63. }
64.
65. /**
66. * Displays the header of the general settings
67. */
68. function general_settings_callback() {
69. esc_html_e('Notification Settings', 'arch-wnb');
70. }

Sam
ple

phparch.com

 www.phparch.com \ October 2019 \ 17

Building Your First WordPress Plugin

and read in the WordPress database. I
use the singular field because though
we have several settings, we’re writing
them all to one row of the database as
an array. Using this function allows
us to make one database call when we
want to get our options and use them
on the frontend of the site.

Render Field Inputs
Above, we told the Settings API we’d

be using the functions text_input_call-
back() and radio_input_callback() for
our fields. We now need to create those
inputs for our use. We have the flex-
ibility to design them to fit our needs
best, and what I’ve created in Listing 5
is just one way to do this.

Each of those functions generates
an HTML input with the details of our
settings fields so they save properly to
the database, as well as pull the existing
database values for display. Figure 5
shows the settings page for our plugin.

Rendering the Frontend of
the Plugin

We’ve done a lot of work on the
backend to get settings created for our
plugin. Now it’s time to create and style
the frontend of our plugin, so visitors to
our site can see the hard work that went
into what we created. We’re going to first
render the data with some HTML on
the frontend of the site, and then we’re
going to enqueue a stylesheet so we can
apply some CSS to those elements.

Render the Display
First, we’re using the hook wp_footer

to insert some HTML for our notifica-
tion bar near the closing </body> tag.
Although we’re adding it to the bottom
of the page, we can use CSS to style it
to appear at the top of the page if that’s
what’s set.

Using the function get_option, we’re
checking that there are options already
saved for our plugin before displaying
any HTML. If we haven’t given a noti-
fication message, then there won’t be
anything worth displaying yet. We then
assign the output of that function to a
variable, so that we can get values from
it.

Listing 5

 1. <?php
 2. /**
 3. * Text Input Callbacks
 4. */
 5. function text_input_callback($text_input) {
 6. // Get arguments from setting
 7. $option_group = $text_input['option_group'];
 8. $option_id = $text_input['option_id'];
 9. $option_name = "{$option_group}[{$option_id}]";
10. // Get existing option from database
11. $options = get_option($option_group);
12. $option_value = $options[$option_id] ?? '';
13. // Render the output
14. echo "<input type='text' size='50' id='{$option_id}'
15. name='{$option_name}' value='{$option_value}' />";
16. }
17.
18. /**
19. * Radio Input Callbacks
20. */
21. function radio_input_callback($radio_input) {
22. // Get arguments from setting
23. $option_group = $radio_input['option_group'];
24. $option_id = $radio_input['option_id'];
25. $radio_options = $radio_input['radio_options'];
26. $option_name = "{$option_group}[{$option_id}]";
27. // Get existing option from database
28. $options = get_option($option_group);
29. $option_value = $options[$option_id] ?? '';
30. // Render the output
31. $input = '';
32. foreach ($radio_options as $radio_option_id => $radio_option_value) {
33. $input .= "<input type='radio' id='{$radio_option_id}'
34. name='{$option_name}'
35. value='{$radio_option_id}' " .
36. checked($radio_option_id, $option_value, false) . ' />';
37. $input .= "<label for='{$radio_option_id}'>'"
38. . "{$radio_option_value}</label>
";
39. }
40. echo $input;
41. }

Figure 5

Sam
ple

phparch.com

18 \ October 2019 \ www.phparch.com

Building Your First WordPress Plugin

Since the setting that we saved to
the options table in our database is an
associative array, we can call individual
values as needed. We have a div with a
class that we can style, but then we can
display additional classes based on the
settings we have for the location that
the notification bar should display, as
well as if it is sticky or not. Within that
div, we have another div containing the
value of the notification text that we set.
See Listing 6.

All of this together equals a working
plugin that displays text on the fron-
tend of our site! Now, all that’s left to do
is enqueue a stylesheet which includes
some CSS to make our notification bar
look nice.

Enqueue a Stylesheet
WordPress has a hook for adding

new scripts and stylesheets called
wp_enqueue_scripts. We’re going to
use that to hook in the function wp_
enqueue_style() and add our stylesheet
located in our plugin folder (Listing 7).
We have to create that new file, which
we’ve called wnb-notification-bar.css
then use the function plugin_dir_url(
__FILE__) to tell WordPress to find it in
the same folder as the current PHP file.

Listing 6

 1. <?php
 2. /**
 3. * Displays the notification bar on the frontend of the site
 4. */
 5. add_action('wp_footer', 'wnb_display_notification_bar');
 6. function wnb_display_notification_bar() {
 7. if (null !== get_option('wnb_settings')) {
 8. $options = get_option('wnb_settings');
 9. ?>
10. <div class="wnb-notification-bar <?php echo $options['display_location']; ?>
11. <?php echo $options['display_sticky']; ?>">
12. <div class="wnb-notification-text">
13. <?php echo $options['notification_text']; ?>
14. </div>
15. </div>
16. <?php
17. }
18. }

Listing 7

 1. /**
 2. * Loads plugin scripts and styles
 3. */
 4. add_action('wp_enqueue_scripts', 'wnb_scripts');
 5. function wnb_scripts() {
 6. wp_enqueue_style(
 7. 'wnb-notification-bar-css',
 8. plugin_dir_url(__FILE__) . 'wnb-notification-bar.css',
 9. [],
10. '1.0.0'
11.);
12. }

https://phpa.me/podcast-ep-24

• Browser automation with
PuPHPeteer

• History of PHP

• Code Editors and IDEs

• Joe Ferguson (@JoePFerguson) on
generating PDFs, Homestead, and more

Listen to Episode 24:

Sam
ple

phparch.com

 www.phparch.com \ October 2019 \ 19

Building Your First WordPress Plugin

We are also setting an empty array of dependencies, meaning
it doesn’t have to wait for other files to load first, as well as
setting a version number so we can use it for updating and
cache-busting in the future as needed.

In the file that we just created, wnb-notifications.css shown
in Listing 8, we’re adding some CSS to style the notification
bar. We also have the classes created in the settings to display

it at the top or bottom of the page, as well as be sticky or not.
There are some styles at the bottom to handle the WordPress
admin bar while logged in as well.

Figure 6 shows the notification bar on a WordPress page
along with Firefox’s inspector view of the CSS.

Wrapping Up
We’ve covered a fair amount: using the Settings API to

create our settings, enqueuing stylesheets, and inserting
HTML and PHP using WordPress hooks. This article is just
the start of what we can do with this plugin. We can ensure
that options are set or place defaults as one addition, as well as
sanitize all of the option callbacks to make sure people don’t
insert broken or malicious code into our text box. There is an
excellent guide on the WordPress Codex for sanitization and
validation9. We could also move the settings to the Custom-
izer API to view our changes while editing on the frontend.

There are countless ways you can begin to modify this
plugin to fit your needs, or start from scratch and build some-
thing entirely new. My hope is the introduction to concepts
in plugin development shown here provides a solid start to
building your plugins. Now that you have some practice put
it to use on your next WordPress project!

 David Wolfpaw is a professional web
developer focused on WordPress theme and
plugin development. He emphasizes helping
small businesses, providing ongoing support,
and educating users through his service
FixUpFox. He helps organize both WordPress
Orlando and WordCamp Orlando.
@davidwolfpaw

9 sanitization and validation: https://phpa.me/wordpress-user-data

Listing 8

 1. .wnb-notification-bar {
 2. z-index: 1001;
 3. position: relative;
 4. width: 100%;
 5. background: #000;
 6. color: #FFFFFF;
 7. text-align: center;
 8. }
 9.

10. .wnb-notification-bar.display_top {
11. top: 0;
12. position: absolute;
13. }
14.

15. .wnb-notification-bar.display_bottom {
16. bottom: 0;
17. position: relative;
18. }
19.

20. .wnb-notification-bar.display_top.display_sticky {
21. position: fixed;
22. }
23.

24. .wnb-notification-bar.display_bottom.display_sticky {
25. bottom: 0;
26. position: sticky;
27. }
28.

29. .wnb-notification-text {
30. padding: 10px
31. }
32.

33. .admin-bar .wnb-notification-bar.display_top {
34. top: 46px;
35. }
36.

37. @media screen and (min-width: 783px) {
38.

39. .admin-bar .wnb-notification-bar.display_top {
40. top: 32px;
41. }
42.

43. }

Figure 6

Related Reading

• finally{}: Semver, PHP and WordPress by Eli White, July
2019. https://phpa.me/finally-july-2019

• WordPress and the IndieWeb—Why You Should
Own Your Voice by David Wolfpaw, March 2019.
https://phpa.me/wordpress-indieweb

• Custom Post Types in WordPress by
Andrea Roenning, December 2018.
https://phpa.me/wp-custom-post-typesSam
ple

phparch.com
https://twitter.com/davidwolfpaw
https://phpa.me/wordpress-user-data
https://phpa.me/finally-july-2019
https://phpa.me/wordpress-indieweb
https://phpa.me/wp-custom-post-types

http://phpa.me/mag_subscribe

	Building Your First WordPress Plugin
	David Wolfpaw

