
www.phparch.com

Object Orientation

Education Station: 
Dependency Injection, Part One

Community Corner: 
San Diego PHP

Pragmatic PHP:  
Think Like a Computer

Security Corner: 
Responsible Encryption

The Workshop: 
What’s New in PHP 7.4

finally{}: 
Frameworks Don’t Make Any 
Sense

AL
SO

 IN
SI

D
E

Object-Oriented Programming:  
A Primer, Part One

Building PHP Extensions With C++

How To Avoid Job Stagnation

November 2019
Volume 18 - Issue 11



PHP[TEK] 2020

Prepare to join us for the
15th edition of our premier
conference.  Moving to
Nashville in 2020.

 
May 18-21

tek.phparch.com



a php[architect] guide

Integrating with another web site but 
an API is not available?

Web scraping is a time-honored technique for collecting the 
information you need from a web page. In this book, you’ll 
learn the various tools and libraries available in PHP to 
retrieve, parse, and extract data from HTML.

Web Scraping with PHP, 2nd Edition includes updates to 
the techniques of the first edition to account for modern 
PHP 7 based libraries written to more easily interact with 
web markup and data.

• HTTP requests and responses
• PHP’s HTTP Stream wrapper
• Using the cURL extension
• Working with the pecl_http extension
• Parsing responses with Guzzle
• Zend Framework’s HTTP classes
• An overview of Symfony’s libraries for web automation
• Writing a client from scratch
• Extensions for parsing and tidying XML and HTML
• Using regular expressions
• … and more.

Written by PHP professional Matthew Turland, this book builds 
on his expertise in creating custom web clients.

Available in Print, PDF, EPUB, and Mobi.

Order Your Copy
http://phpa.me/web-scraping-2ed

https://phpa.me/web-scraping-2ed


30  \  November 2019   \  www.phparch.com

The Workshop

What’s New in PHP 7.4
Joe Ferguson

PHP 7.4 brings typed properties, arrow functions, coalesce assignment operators, 
and more. PHP 7.4.0RC4 was released on October 17th. There’s still plenty of time 
as the current planned date for general availability of 7.4 is November 28th, 2019, 
according to the PHP 7.4 timetable1.

1 PHP 7.4 timetable: https://wiki.php.net/todo/php74
2 January: https://phparch.com/magazine/2019/jan/
3 February: https://www.phparch.com/magazine/2019/feb/
4 typed properties: https://wiki.php.net/rfc/typed_properties_v2
5 PHP Easy Math project: https://github.com/svpernova09/php-easy-math

Typed Properties
In January2 and February3 2019 I 

wrote a two-part series The Road to 
PHP 7.3 where we used static analyzers 
Phan and PHPStan to analyze our code 
to prepare for upgrading PHP versions. 
In this series, we covered the idea of 
adding static typing to our code allowed 
static analyzers to know more about our 
code and enabled these tools to help us 
find bugs without running the code 
itself. We have been able to type-hint 
objects and interface variables since 
PHP 5, PHP 7 introduced scalar type 
hints, and 7.2 saw the addition of the 
object type.

The next step for the ability to strongly 
type your PHP application is coming in 
7.4 in the form of typed properties4. A 
benefit of strongly typed code is we can 
use a static analyzer such as PHPStan 
or Phan to find potential errors without 
executing any code. However, these 
tools only know what they can read in 
our source. If we add more types to our 
applications, these static analysis tools 
become much smarter in finding bugs 
and highlighting problems in code. If 
we look back at our PHP Easy Math 
project5, we can see our Addition class is 
using annotations to tell our IDE what 
our parameter and return types should 
be in Listing 1.

We could refactor our code to 
resemble Listing 2.

Granted, this does change how we 
call our class by shifting our param-
eters from the method to the class; 
there’s still a bit of cruft there with our 
DocBlock annotations type hinting our 
parameters $x and $y.

Listing 1

 1. <?php
 2. 

 3. namespace EasyMath;
 4. 

 5. class Addition
 6. {
 7.    /**
 8.     * Sum 2 numbers
 9.     * @param float $x
10.     * @param float $y
11.     * @return float
12.     */
13.    public function add($x, $y): float {
14.       return $x + $y;
15.    }
16. }

Listing 2

 1. <?php
 2. 

 3. namespace EasyMath;
 4. 

 5. class Addition
 6. {
 7.    /** @var int $x */
 8.    private $x;
 9.    /** @var int $y */
10.    private $y;
11. 

12.    public function __construct(int $x, string $y) {
13.       $this->x = $x;
14.       $this->y = $y;
15.    }
16. 

17.    public function add(): int {
18.       return $this->x + $this->y;
19.    }
20. }

phparch.com
https://wiki.php.net/todo/php74
https://phparch.com/magazine/2019/jan/
https://www.phparch.com/magazine/2019/feb/
https://wiki.php.net/rfc/typed_properties_v2
https://github.com/svpernova09/php-easy-math


 www.phparch.com  \  November 2019  \  31

What’s New in PHP 7.4

The Workshop

PHP 7.4 and typed properties allow us to remove those 
annotations completely while still retaining our types, as you 
can see in Listing 3.

This change supports all types except for void and callable. 
The PHP internals team decided void was not useful and 
unclear in many cases. callable was not supported due to the 
requirement of context around its use.

Arrow Functions
The arrow functions RFC6 brings the short function syntax 

to PHP 7.4. If you’ve worked with modern JavaScript, you 
may already be aware of this syntax, as many frameworks 
have begun to leverage it for closures. I was excited to see this 
RFC included in PHP because I’m a fan of its usage in JavaS-
cript. The result is a more readable code without as much 
boilerplate, which adds to readability in its own right.

If we dive into an example of using array_map to pull array 
values from keys this would be the code you’d write today in 
PHP 7.x:

function array_values_from_keys($arr, $keys) { 
    return array_map(function ($x) use ($arr) { 
         return $arr[$x];  
    }, $keys); 
}

We could remove some of the cruft refactoring this method:

function array_values_from_keys($arr, $keys) { 
    return array_map(fn($x) => $arr[$x], $keys); 
}

The syntax boils down to fn(parameters) => expression. 
Variables in the expression which were defined in their parent 
scope are used as expected without invoking the use($vari-
able) syntax. If we wanted to skip using the Addition class 

6 arrow functions RFC: https://wiki.php.net/rfc/arrow_functions

Listing 3

 1. <?php
 2. 

 3. namespace EasyMath;
 4. 

 5. class Addition
 6. {
 7.    public int $x;
 8.    public int $y;
 9. 

10.    public function __construct(int $x, string $y) {
11.       $this->x = $x;
12.       $this->y = $y;
13.    }
14. 

15.    public function add(): int {
16.       return $this->x + $this->y;
17.    }
18. }

Using Xdebug to squash bugs, identify bootlenecks, and boost productivity?

Become a Pro or Business supporter to 
help ongoing development. 

Supporters get help via email and 
elevated issue priority.

https://xdebug.org/support support@xdebug.org

phparch.com
https://wiki.php.net/rfc/arrow_functions


32  \  November 2019   \  www.phparch.com

What’s New in PHP 7.4

The Workshop

from our previous PHP Easy Math library, we could use this 
short syntax to squash our three-line function into one:

$y = 1; 
 
$getTotal = function ($x) use ($y) { 
    return $x + $y; 
}; 
 
$getTotal(42); // 43

Becomes:

$y = 1; 
$getTotal = fn($x) => $x + $y; 
$getTotal(34); // 35

It’s important to remember the goal of this change is to 
reduce the amount of boilerplate code in your applications, 
which increases readability. As developers, we are human 
code linters, and anything we can do to increase readability 
directly makes our code easier to understand. Also, remember 
it’s important to have moderation in all things, including 
moderation. You shouldn’t refactor your entire codebase to 
a bunch of one-liner statements just because you can. Keep 
your code easy to understand, and remember there may be 
others who follow behind you in maintaining a codebase.

Coalesce Assignment Operator
While PHP 7.0 brought us the Null Coalesce Operator7 

which allows us to write code such as:

$_GET['user'] = $_GET['user'] ?? 'nobody';

The new coalesce assignment operator in PHP 7.4 brings us 
the ability to simplify this code to the following:

$_GET['user'] ??= 'nobody';

This new operator also has the benefit of more readable 
code, since we’re not duplicating $_GET['user'] in a single 
line. In our example, if $_GET['user'] is null, the value nobody 
will be assigned. An important distinction is ?? is a compar-
ison operator while ??= is an assignment operator.

Spread Operator In Array Expressions
PHP 5.6 bought us the new argument unpacking8 feature. 

This feature allows us to use ...$var syntax to “unpack” the 
contents of the argument $var in a function call. Given the 
following array, we can clean up our code and also support a 
variable amount of arguments in our functions (see Listing 4).

The important reason to use the spread operator ... is 
because the performance is faster since the operator is a 
language structure as opposed to a function like array_
merge(). The code comes out more readable in my experience.

7 Null Coalesce Operator: https://wiki.php.net/rfc/isset_ternary
8 argument unpacking: https://wiki.php.net/rfc/argument_unpacking

While the spread operator as isn’t new to PHP 7.4, under-
standing how it works is important because 7.4 brings us the 
ability to use the operator in array expressions. We can also 
mix and match array elements with the spread operator such 
as:

<?php 
$pets = ['dog', 'cat', 'fish']; 
$wildlife = ['bear', 'moose', 'squirrel']; 
$animals = [...$pets, 'bigfoot', ...$wildlife]; 
// $animals: dog, cat, fish, bigfoot,  
// bear, moose, squirrel

In PHP 7.4, the code runs without any output. In PHP 
versions 7.3 and lower, we’ll see a parse error: Parse error: 
syntax error, unexpected '...' (T_ELLIPSIS), expecting '].

The key to this new functionality lies in the ability to 
unpack, or spread, any item which is Traversable9. The item 
must be implemented by IteratorAggregate10 or Iterator11. 
The Traversable interface itself is not something we would 
implement in our code; it’s only available to the engine under 

9 Traversable: https://php.net/class.traversablatore
10 IteratorAggregate: https://php.net/class.iteratoraggregate
11 Iterator: https://php.net/class.iterator

Listing 4

 1. <?php
 2. 

 3. function foo(...$args) {
 4.    var_dump($args);
 5. }
 6. 

 7. $pets = ['dog', 'cat', 'fish'];
 8. 

 9. // Instead of this:
10. foo($pets[0], $pets[1], $pets[2]);
11. 

12. // or even worse:
13. foo($pets[0]);
14. foo($pets[1]);
15. foo($pets[2]);
16. 

17. // we can use unpacking
18. foo(...$pets); // outputs: dog, cat, fish
19. 

20. // We can even chain them together
21. $wildlife = ['bear', 'moose', 'squirrel'];
22. foo(...$pets, ...$wildlife);
23. //outputs: dog, cat, fish, bear, moose, squirrel
24. 

25. // we can't use a conditional argument after
26. // unpacking an argument
27. foo(...$pets, 'bear');
28. 

29. // instead put those parameters first
30. foo('bear', ...$pets);
31. //outputs: bear, dog, cat

phparch.com
https://wiki.php.net/rfc/isset_ternary
https://wiki.php.net/rfc/argument_unpacking
https://php.net/class.traversablatore
https://php.net/class.iteratoraggregate
https://php.net/class.iterator


 www.phparch.com  \  November 2019  \  33

What’s New in PHP 7.4

The Workshop

the hood of PHP. Listing 5 is an example 
using the ArrayIterator class12.

Why would we use iterators when we 
could use foreach()? Performance! If 
we run the previous code through 3v4l.
org13, the online PHP editor and click 
the performance tab below the response, 
we can see this code uses 14.87 MB of 
memory to run in PHP 7.4 (Figure 1).

Let’s refactor our code (Listing 6) 
without using iterators and run it again.

Figure 2 shows that our refactored 
code uses 14.94 MB of memory—only 
slightly more—but remember we’re 
dealing with a tiny amount of data. In 
the real world, this memory adds up 
and can greatly impact your overall 
performance.

Experimental Just-in-Time 
Compiling

PHP 7.4 also brings an experi-
mental feature of Just-In-Time14, or JIT 
compiling. The feature is disabled by 
default and is likely not ready for the 
faint of heart, but we wanted to intro-
duce you to it since this is a brand new 
feature of the language not previously 
possible. The JIT looks for previously 
compiled interpreted code (normal 
PHP executed by the compiler) and 
keep track of it as “warm” or “hot” and 
reuse the already compiled code. It 
uses DynAsm15 to generate native code. 
Think of this as a cache to always run 
the most efficient code as the compiler 
can and steps above just caching 
opcodes. While the experimental code 
has made it into PHP 7.4, we’ll have to 
wait until PHP 8 to kick the tires and 
understand the full impact of what the 
JIT can bring to our applications.

12 ArrayIterator class: 
https://php.net/class.arrayiterator
13 3v4l.org: https://3v4l.org
14 Just-In-Time: https://wiki.php.net/rfc/jit
15 DynAsm: https://luajit.org/dynasm.html

Figure 1

Listing 5

 1. <?php
 2. $animals = [
 3.    'cat' => 'Garfield',
 4.    'dog' => 'Snoopy',
 5.    'moose' => 'Bullwinkle',
 6.    'squirrel' => 'Rocky'
 7. ];
 8. 

 9. $animal_object = new ArrayObject($animals);
10. $iterator = $animal_object->getIterator();
11. 

12. // Count our items
13. echo 'Iterating over: ' . $animal_object->count() . ' values' . PHP_EOL;
14. 

15. while ($iterator->valid()) {
16.    echo $iterator->key() . ' is a ' . $iterator->current() . PHP_EOL;
17.    $iterator->next();
18. }

Listing 6

 1. <?php
 2. $animals = [
 3.    'cat' => 'Garfield',
 4.    'dog' => 'Snoopy',
 5.    'moose' => 'Bullwinkle',
 6.    'squirrel' => 'Rocky'
 7. ];
 8. // Count our items
 9. echo 'Iterating over: ' . count($animals) . ' values' . PHP_EOL;
10. 

11. foreach ($animals as $animal => $name) {
12.    echo $animal . ' is a ' . $name . PHP_EOL;
13. }

phparch.com
https://php.net/class.arrayiterator
https://3v4l.org
https://wiki.php.net/rfc/jit
https://luajit.org/dynasm.html


34  \  November 2019   \  www.phparch.com

What’s New in PHP 7.4

The Workshop

Preloading
While we wait for what the JIT can do 

for our performance, we can leverage 
another feature brand new to 7.4: 
preloading16. While OPcache saves the 
opcodes of our interpreted PHP appli-
cations, we can preload entire files for 
classes and functions to be compiled 
once at server startup. It saves time 
during the execution of our application. 
One caveat to preloading is you cannot 
preload unlinked files, which means all 
the classes you preload need to be linked 
together via traditional object-oriented 
linking such as extending or imple-
menting. That is, you can not preload 
a child class without also preloading its 
parents. Likewise, you can not preload 
a class that uses an interface or trait 
without also preloading those inter-
faces or traits. If we wanted to preload 
the entire Laravel framework, we would 
need to loop over all the PHP files in 
the framework and load them from one 
location via the following line in our 
php.ini configuration file.

opcache.preload=/laravel/project/preload.php

You’ll need an automated way to 
update this preloaded list of files and 
then also reload PHP-FPM or your 
webserver to reparse the autoloaded file.

The real value for preloading likely 
comes from tools like Composer or 
framework helpers supporting this new 
feature by automatically preloading 
all of our dependencies for us with 
minimal developer interaction. If you’re 
eager to test drive preloading, check 
out this package17 for Laravel, which 
preloads the files for you, leaving you 
the task to add the path to the preload 
file to your php.ini file.

16 preloading: https://wiki.php.net/rfc/preload
17 package: https://github.com/brendt/laravel-preload
18 PHP RFC: Deprecations for PHP 7.4: https://wiki.php.net/rfc/deprecations_php_7_4
19 upgrade document on GitHub: https://phpa.me/php-7-4-0RC3-upgrading

Deprecations
The list of deprecations for this 

version, while not empty, does not 
include many significant ones. One 
worth mentioning, for security’s sake, 
is the deprecation of the allow_url_
include INI setting. If you have code 
which depends on including PHP code 
from a remote machine, it’s time to 

rethink your solution. For the full list 
of deprecations, see PHP RFC: Depre-
cations for PHP 7.418.

You can find all these changes and 
more in the PHP 7.4 upgrade doc in the 
php-src repo. As of this writing, PHP 
7.4RC3 is the latest available, and you 
can find the entire upgrade document 
on GitHub19.

Happy Upgrading!

 Joe Ferguson is a PHP developer and community organizer. 
He is involved with many different technology related initia-
tives in Memphis including the Memphis PHP User group. He’s 
been married to his extremely supportive and amazing wife 
for a really long time and she turned him into a crazy cat man. 
They live in the Memphis suburbs with their two cats. 
@JoePFerguson

Figure 2

Related Reading

• The Workshop: The Road to 7.3, Part One  
by Joe Ferguson, January 2019. https://phpa.me/workshop-jan-2019

• The Workshop: The Road to 7.3, Part Two  
by Joe Ferguson, February 2019. https://phpa.me/workshop-feb-2019

phparch.com
https://wiki.php.net/rfc/preload
https://github.com/brendt/laravel-preload
https://wiki.php.net/rfc/deprecations_php_7_4
https://phpa.me/php-7-4-0RC3-upgrading
https://twitter.com/JoePFerguson
https://phpa.me/workshop-jan-2019
https://phpa.me/workshop-feb-2019


Programming

The web has changed. The tech necessary to build modern 
web applications is constantly evolving. Busy developers have 
a tough time keeping up and keeping their existing projects 
moving forward.

We have 5 great speakers presenting on different aspects of 
Modern Web Programming who will help you stay current. Join 
us and learn.

December 20, 2019 Online 9:00 am - 3:00 pm

Tickets and more information available at daycamp4developers.com

https://daycamp4developers.com/


http://phpa.me/mag_subscribe

	What’s New in PHP 7.4
	Joe Ferguson


