
www.phparch.com

New HabitsNew Habits

Education Station:Education Station:
Unit Testing BasicsUnit Testing Basics

Community Corner: Community Corner:
AruzinaPHPAruzinaPHP

Pragmatic PHP:Pragmatic PHP:
Mastering the CraftMastering the Craft

Security Corner:Security Corner:
Seven Deadly Sins of Seven Deadly Sins of
SecuritySecurity

The Workshop: The Workshop:
Ansible in PracticeAnsible in Practice

finally{}:finally{}:
Certainly CertificationsCertainly Certifications

ALSO INSIDEALSO INSIDE

Object-Oriented Programming: Object-Oriented Programming:
A Primer, Part TwoA Primer, Part Two

Never* Use ArraysNever* Use Arrays

Dealing With Devpression Dealing With Devpression
Or: How I Learned to Dislike Myself Less, Part TwoOr: How I Learned to Dislike Myself Less, Part Two

Anatomy of a BrowserAnatomy of a Browser

January 2020
Volume 19 - Issue 1

Sam
ple

omerida
Rubber Stamp

We are the longest-running
PHP developer conference
in the US. This year broken
into three tracks on Tech
Leadership, PHP
Development, and Web
Technologies.

May 18-21, 2020
Nashville, TN — Opryland

tek.phparch.com

On Sale!

Save $200

Sam
ple

a php[architect] guide

Integrating with another web site but
an API is not available?

Web scraping is a time-honored technique for collecting the
information you need from a web page. In this book, you’ll
learn the various tools and libraries available in PHP to
retrieve, parse, and extract data from HTML.

Web Scraping with PHP, 2nd Edition includes updates to
the techniques of the first edition to account for modern
PHP 7 based libraries written to more easily interact with
web markup and data.

•	 HTTP requests and responses
•	 PHP’s HTTP Stream wrapper
•	 Using the cURL extension
•	 Working with the pecl_http extension
•	 Parsing responses with Guzzle
•	 Zend Framework’s HTTP classes
•	 An overview of Symfony’s libraries for web automation
•	 Writing a client from scratch
•	 Extensions for parsing and tidying XML and HTML
•	 Using regular expressions
•	 … and more.

Written by PHP professional Matthew Turland, this book builds
on his expertise in creating custom web clients.

Available in Print, PDF, EPUB, and Mobi.

Order Your Copy
http://phpa.me/web-scraping-2ed

Sam
ple

https://phpa.me/web-scraping-2ed

 www.phparch.com \ January 2020 \ 35

Education Station

Unit Testing Basics
Chris Tankersley

Recently, we’ve discussed principles for writing clean code in your php applications.
Testing is a valuable technique to help you produce and maintain a codebase, but it
can be daunting to learn. In this article, we’ll start with unit testing. Let’s look at how
tests help during the design phase and in maintenance, what unit tests are, and how
to use PHPUnit for your test suite.

Over the last year, one thread I have tried to keep is the
idea of writing clean, simple code. I have covered topics like
dependency injection over the last few months, and before
that, I talked about several concepts like DRY, SOLID, and
why I feel strongly-typed code is a good idea.

The reason for this is, ultimately, new code becomes legacy
code. I was recently talking with some colleagues, and I
mentioned code becomes legacy the second we write it. Why?
Once it’s written, code becomes something the unfortunate
souls that come after us have to maintain.

There is a persistent joke that “Past me was a horrible
developer!” We are not bad developers. No, it’s just that code
decays quicker than we think.

The first line of defense against decaying code is to write
simple, clean code. The harder it is to decipher the intention
of code, the more difficult it is to maintain. Remember when

“past me” tried to be clever and reduce that set of nested ifs
into switch() and ternary statements? That might have
worked, but it is not clear.

After clean code, the next phase is testing. The only way
to make sure the code continues to work and does not break
is to make sure it is easily testable. There are a few different
accepted ways of how to write and run tests, each with their
purposes and reasons for how they work.

•	 Unit Tests: Testing code in isolation of the rest of the
codebase.

•	 Integration Testing: Testing code to make sure it works as
expected with other units.

•	 Functional Testing: Testing more substantial portions of
related systems at once.

Some of these may have further specializations, like behav-
ioral testing generally borne out of a need for functional
testing. Each type of test is essential for different reasons,
and the idea is as you move from one to the other, you cover
multiple facets of an application from various angles.

Unit Testing
Let’s begin by focusing on unit testing. Unit testing is useful

for a few different things. The first is testing the written code.
The second is it can help determine whether or not the code
makes sense before we use the code in many different places.
I routinely find poor design choices in my classes using unit
tests because if it is hard to write a test, it is hard to use in real
situations.

Unit testing is the smallest kind of testing one can do. The
basic idea of a unit test is to take a small block of code, like a
method in a class, and test it. A unit test ensures the general
logic works under a variety of inputs, irrespective of addi-
tional real dependencies like a database.

Consider the block of code in Listing 1, where we have a
class that turns a string into a URL-friendly slug.

If I pass in a string to the convert method, I expect to get
a new string that is all lowercase, with spaces replaced by
hyphens, and all punctuation removed. How can we test this?

The easiest way to test this is to create a file that can run
the tests:

// Slugifier.test.php
require_once 'Slugifier.php';

$slugifier = new \MyApp\Slugifier();
if ($slugifier->convert("This was some text!")
 !== "this-was-some-text") {
 throw \Exception('Text does not match!');
}

Listing 1

 1. <?php
 2. // Slugifier.php
 3. namespace MyApp;
 4.

 5. class Slugifier
 6. {
 7. public function convert(string $text): string {
 8. $text = strtolower($text);
 9. preg_match('/[a-z0-9]+/i', $text, $output);
10. $text = str_replace(' ', '-', $output[0]);
11. return $text;
12. }
13. }

Sam
ple

phparch.com

36 \ January 2020 \ www.phparch.com

Education Station
Unit Testing Basics

Anyone can run this script to make sure the Slugifier::con-
vert() method is working as expected. We can now change
the internal implementation of the convert() method when-
ever we need to and make sure it does not break. We have a
small test that makes sure convert() does what we expect it to,
and nothing more or less.

We can then build onto this script and build more test
scripts for more of our codebase.

Is any of this super elegant? No, but now anyone can run
the test with php Slugifier.test.php, and that is better than
nothing. From here, you could write a test runner which
searches through your source code for *.test.php files and
can execute the files, and stop when it encounters an error.

This is very close to what the PHP Test Runner does for
the core PHP language itself. The big difference would be
that PHP tests (usually denoted by a .phpt extension) test
output directly, and not necessarily failure conditions.

PHPUnit
There is a better and more accepted way to write tests. The

very basic way I show above works, but it fails at a few things.
First, unit tests should run in total isolation. The code should
be executed from a clean slate every time in addition to
testing small chunks of code. The above setup makes it very
easy to break this. The non-elegant solution also has no way
to deal appropriately with dependencies.

Fortunately, there is an excellent tool that has been around
since 2001, PHPUnit1. PHPUnit uses the xUnit architecture,
in turn derived from Smalltalk’s SUnit. xUnit describes how
to group and execute tests and how to deliver the results.

1	 PHPUnit: https://phpunit.de

Installing PHPUnit
Installing PHPUnit is as simple as any other library using

Composer, but it should be declared as a development depen-
dency and not as a normal dependency. This way, PHPUnit is
only installed when doing development and can be ignored
when installing dependencies for Production. We can use
Composer like normal and pass an additional --dev flag:

composer require --dev phpunit/phpunit ^8.5

Do not install PHPUnit on your production machines.
I’m going to tell you the same thing the PHPUnit documen-
tation says:

If you upload PHPUnit to a webserver then your
deployment process is broken. On a more general note,
if your vendor directory is publicly accessible on your
webserver then your deployment process is also broken.

Writing Tests
Writing tests with PHPUnit is straightforward and uses

various naming conventions for how to set things up. You
define a class which extends PHPUnit\Framework\TestCase,
name it [Class]Test, and create public methods starting with
the word test. It has some built-in assertions, or methods, for
testing the validity of data, that we can call to make sure code
works correctly.

Where do we put this code? PHPUnit expects all of the tests
to live in their folder. In PHP, the typical convention is to have
a tests/ directory in the root of your project, and under there,
follow a similar folder structure to the other source code. The
actual test files are [Class]Test.php.

|____src
| |____MyApp
| | |____Slugifier.php
|____composer.json
|____tests
| |____MyApp
| | |____SlugifierTest.php
|____composer.lock

We can convert the above test without much work (see
Listing 2).

This test looks broadly the same, but the difference is our
test is now wrapped in the convention PHPUnit expects.
Since we now extend TestCase, we can use a method called
assertSame() to test that two values are the same. We pass in
argument 1 as the string we expect, and argument 2 as the
result from our own convert() method.

PHPUnit allows quick access to various types of assertions2,
including:

•	 assertSame(mixed $expected, mixed $actual): Make sure
the values of two things match.

2	 various types of assertions: https://phpa.me/phpunit-8-5-assertions

Listing 2

 1. <?php
 2. // tests/MyApp/SlugifierTest.php
 3.

 4. use PHPUnit\Framework\TestCase;
 5. use MyApp\Slugifier;
 6.

 7. class SlugifierTest extends TestCase
 8. {
 9. public function testConvertWorksProperly() {
10. $slugifier = new Slugifier();
11.

12. $this->assertSame(
13. "this-was-some-text",
14. $slugifier->convert("This was some text!")
15.);
16. }
17. }

Sam
ple

phparch.com
https://phpunit.de
https://phpa.me/phpunit-8-5-assertions

 www.phparch.com \ January 2020 \ 37

Education Station
Unit Testing Basics

•	 assertEqual(mixed $expected, mixed $actual): Make
sure two things are the same, like that two objects are the
same instance.

•	 assertTrue(bool $condition) and assertFalse(bool
$condition): Make sure values are true or false.

•	 assertArrayHasKey(mixed $key, array $array): Make
sure an array key exists.

•	 assertCount(int $expected, $haystack): Make sure the
$haystack has the correct count.

If we have composer.json set up to autoload our MyApp
namespace, we can run the PHPUnit test runner and point it
to vendor/autoload as a bootstrapping script, and then to the
tests/ directory to run our tests.

vendor/bin/phpunit --bootstrap vendor/autoload.php tests/

PHPUnit searches through the tests/ directory for PHP
files to execute, and any tests it finds.

Anatomy of Good Tests
Writing a test is one thing, but writing a good test is some-

thing else. One needs to resist the urge to throw a bunch of
stuff inside of a method and call it a day—a good unit test
has a few components and ideals that make a test worthwhile.
What you do not want to end up with is a bunch of tests that
just do the bare minimum or don’t really test anything at all.

The first idea I try and stick to is that each test tests one
idea, and preferably should only execute one operation. A
test should not test both retrieving data and saving it; those
should be two separate tests. Listing 3 is an example of a poor
test.

This test’s name says it is testing whether the convert()
method works. In reality, this test is hitting a database, finding
a specific post, making sure it is an object, then using that
$post object as part of the test. Doing all of those operations is
beyond the intended scope of a unit test. We should be testing
only one operation—in this case, that a string is turned into
another string. Anything more is too much work for the test.
We should split this single test into at least two total tests:
1.	 one for the Slugifier service,
2.	 and the other for the PostService::find() method.

Each of these is a separate unit of work. By having indepen-
dent tests to verify each runs as intended, you can be confident
both should work when used together. And if something fails,
having two tests makes it easier to identify which component
was at fault.

This does not mean you cannot have multiple assertions
per test. You should have one logical assertion per test, but
that can be broken down into multiple assertions. What do
I mean? We could, for example, test whether our fictional
PostService class returns a Post object. That is our “logical”
assertion. To make sure the Post object is correct, we can run
multiple, smaller assertions that help us reach our “logical”
assertion (Listing 4).

The difference between these ideas is the number of logical
assertions. In the bad test, we did multiple operations before
we could run the tests, and even partially tested the Post
object. In the second test, we did one operation, finding a
post, and then made sure the post looked correct. You can
have multiple assertions per test, but limit the number of
operations per test.

The second thing to think about is not only successful oper-
ations but also failure operations. For our PostService::find()

Listing 3

 1. <?php
 2.

 3. use PHPUnit\Framework\TestCase;
 4. use MyApp\Slugifier;
 5. use MyApp\PostService;
 6.

 7. class SlugifierTest extends TestCase
 8. {
 9. public function testConvertWorksProperly() {
10. $slugifier = new Slugifier();
11. $posts = new PostService();
12.

13. $post = $posts->find(1);
14.

15. $this->assertIsObject($post);
16.

17. $this->assertSame(
18. $post->getSlug(),
19. $slugifier->convert($post->getTitle())
20.);
21. }
22. }

Listing 4

 1. <?php
 2.

 3. use PHPUnit\Framework\TestCase;
 4. use MyApp\PostService;
 5. use MyApp\Post;
 6.

 7. class PostServiceTest extends TestCase
 8. {
 9. public function testPostLooksOKWhenRetrievedWithFind() {
10. $id = 1;
11. $service = new PostService();
12. $post = $service->find($id);
13.

14. $this->assertIsObject($post);
15. $this->assertInstanceOf(Post::class, $post);
16. $this->assertEqual($id, $post->getId());
17. $this->assertEqual('Why Testing Is Good', $post->getTitle());
18. }
19. }

Sam
ple

phparch.com

38 \ January 2020 \ www.phparch.com

Education Station
Unit Testing Basics

method, we made sure we could find a post. What happens
when we cannot find a post? Should we test that? Yes, we
should! If we expect an exception is thrown, we can use
$this->expectException() to flag that we expect our test to
throw an exception, and that we expect it to be a specific type
of exception, see Listing 5.

Third, a short unit test is more readable and preferred over
a long unit test. If you keep to one operation per test, this
should drastically help cut down on the amount of stuff inside
a single test. A developer should be able to skim the test and

understand what is going on quickly. Complicated test setups
mean either your tests are doing too much, or your objects
are too complicated and need restructuring. Remember, each
class should have one responsibility.

Handling Lots of Test Data
Our test case for our Slugifier::convert() method is pretty

good, but what happens when we want a unit test to have a lot
of data? PHPUnit has what it calls a “data provider,” which is a
function which returns an array of arrays that are passed into
a test. This is especially useful when you need to test many
different permutations of data, but a single test can handle all
of these permutations.

You can add an annotation to the DocBlock of a test with @
dataProvider [method], and PHPUnit passes the return values
of that method into your test (see Listing 6). The data provider
should return an iterable, which yields an array or an array of
arrays, with the internal array being the arguments for your
test. If we augment our test to take in a $expected string and
a $text string, our data provider needs to return an array
of two-element arrays, with element 0 being our expected
output, and element 1 being our test text to pass in.

Data providers are a great weapon against regression
testing. As users and testers file bugs, they can be added to
the data provider to make sure they never break again.

Dealing with Dependencies
Our simple Slugifier class has no dependencies, but

most code has some interaction between classes. As I have
discussed in earlier articles, these are dependencies and, no
matter how well you structure your code, you always have
some coupling—or interaction—between different classes.

If we have an Invoice class (Listing 7) that requires some
sort of WriterInterface-based dependency, which generates
the actual invoice, we have a dependency.

Listing 5

 1. <?php
 2.

 3. use PHPUnit\Framework\TestCase;
 4. use MyApp\PostService;
 5. use MyApp\Post;
 6. use MyApp\PostNotFoundException;
 7.

 8. class PostServiceTest extends TestCase
 9. {
10. public function testExceptionThrownWithBadPostID() {
11. $this->expectException(PostNotFoundException::class);
12.

13. $service = new PostService();
14. $post = $service->find('asdf');
15. }
16. }

Listing 6

 1. <?php
 2. // tests/MyApp/SlugifierTest.php
 3.

 4. use PHPUnit\Framework\TestCase;
 5. use MyApp\Slugifier;
 6.

 7. class SlugifierTest extends TestCase
 8. {
 9. /**
10. * @dataProvider sluggableStringsProvider
11. */
12. public function testConvertWorksProperly(string $expected,
13. string $text) {
14. $slugifier = new Slugifier();
15.

16. $this->assertSame($expected, $slugifier->convert($text));
17. }
18.

19. public function sluggableStringsProvider() {
20. return [
21. ['this-is-text', 'This is text'],
22. ['this-is-text', 'This is text!'],
23. ['this-is-text', 'THIS IS TEXT'],
24. ['hello', 'h%$̂ &e@#l#$l̂ &o'],
25.];
26. }
27. }

Listing 7

 1. <?php
 2.

 3. class Invoice
 4. {
 5. protected $id;
 6. protected $writer;
 7.

 8. public function __construct(string $id,
 9. WriterInterface $writer) {
10. $this->id = $id;
11. $this->writer = $writer;
12. }
13.

14. // ...
15.

16. public function generate(): string {
17. return $this->writer->write($this->getData());
18. }
19. }

Sam
ple

phparch.com

 www.phparch.com \ January 2020 \ 39

Education Station
Unit Testing Basics

Unit tests, however, test things in
isolation. We should not create an
actual writer object to pass in, but we
should create a fake version we can
control. This design allows us to test
specific conditions for the test without
worrying about setting up a full writer
or worrying about side effects from
using the actual object. The most
common reason is to help control the
output and behavior of the dependency
to make sure all conditions, both good
and bad, happen.

PHPUnit can create fake objects,
which are properly called test doubles.
PHPUnit can create stubs, which are
test doubles that return data, or mocks,
which allow some more introspection
on the way we call the test double. For
example, let’s create a stub WriterInter-
face which returns a pre-set string as in
Listing 8.

We create a stub using
$this->createStub([ClassName]), which
returns an object we can start to manip-
ulate. We then tell it to add a method
called write() and to have it always
return "This was output" whenever it
is called. This direct control over the
stub’s return value is where we can see
how the class and method we are testing,
Invoice:generate(), can react to
different values. You can even have the
method throw an exception to test error
handling.

If you need more control, PHPUnit’s
mock system allows you to validate
the data coming into the test double.
PHPUnit also has built-in support for
Prophecy3, which is a mocking frame-
work. I use this all the time at work as
our unit tests deal with PSR-7 requests;
Prophecy makes it extremely easy to
validate data, like a JSON body we
intend to send, is coming into our test

3	 Prophecy:
https://github.com/phpspec/prophecy
4	 Test Doubles:
https://phpa.me/phpunit-8-5-doubles
5	 Getting Started:
https://phpa.me/phpunit-8-started
6	 documentation:
https://phpunit.de/documentation.html

doubles to make sure we are formatting
this correctly.

More information on creating stubs
and mocks can be found in the PHPUnit
Documentation on Test Doubles4.

There is More
PHPUnit has a large, rich set of func-

tionality that is impossible to capture
in a single article. I have just scratched
the surface of writing unit tests, and

there are other types of tests for us to
examine! Next month, we’ll dive into
functional and integration testing and
where it fits in next to unit tests.

All of the above should give you a
good base for writing tests. PHPUnit is
an incredibly well-documented library.
You can find more information about
the general usage of PHPUnit in their
Getting Started5 section and their excel-
lent documentation6.

 Chris Tankersley is a husband, father, author, speaker,
podcast host, and PHP developer. He works for InQuest, a
network security company out of Washington, DC, but lives
in Northwest Ohio. Chris has worked with many different
frameworks and languages throughout his twelve years of
programming but spends most of his day working in PHP and
Python. He is the author of Docker for Developers and works
with companies and developers for integrating containers into
their workflows. @dragonmantank

Related Reading

•	 End-to-End Testing Automation With PuPHPeteer
by Gabriel Zerbib, September 2019. https://phpa.me/zerbib-puphpeteer

•	 Testing Strategy With the Help of Static Analysis
by Ondrej Mirtes, April 2018. https://phpa.me/apr-18-testing-static-analysis

•	 PHPUnit Worst Practices by Victor Bolshov, April 2018.
https://phpa.me/phpunit-worst-practices

Listing 8

 1. <?php
 2.

 3. namespace MyAppTest;
 4.

 5. use PHPUnit\Framework\TestCase;
 6. use MyApp\Invoice;
 7.

 8. class InvoiceTest extends TestCase
 9. {
10. public function testWrite() {
11. $expected = 'This was output';
12.

13. $writer = $this->createStub(\MyApp\WriterInterface::class);
14. $writer->method('write')
15. ->will($this->returnValue($expected));
16.

17. $invoice = new Invoice('123-abc', $writer);
18. $output = $invoice->generate();
19.

20. $this->assertSame($expected, $output);
21. }
22. }

Sam
ple

phparch.com
https://github.com/phpspec/prophecy
https://phpa.me/phpunit-8-5-doubles
https://phpa.me/phpunit-8-started
https://phpunit.de/documentation.html
https://twitter.com/dragonmantank
https://phpa.me/zerbib-puphpeteer
https://phpa.me/apr-18-testing-static-analysis
https://phpa.me/phpunit-worst-practices

Sam
ple

http://phpa.me/mag_subscribe

	Unit Testing Basics
	Chris Tankersley

