
www.phparch.com

Cultivating theCultivating the
Developer Developer
ExperienceExperience

Education Station:Education Station:
Integration and Functional Integration and Functional
TestingTesting

Community Corner: Community Corner:
Greater Toronto Area PHPGreater Toronto Area PHP

History and Computing:History and Computing:
The Y2K DeadlineThe Y2K Deadline

Security Corner:Security Corner:
A Reintroduction to TLSA Reintroduction to TLS

The Workshop: The Workshop:
GitHub Actions for GitHub Actions for
Continuous IntegrationContinuous Integration

finally{}:finally{}:
Interview IntrospectionInterview Introspection

ALSO INSIDEALSO INSIDE

Late to the Party, but Nailing It! Late to the Party, but Nailing It!
A Journey into Pair ProgrammingA Journey into Pair Programming

How to Speed up the Code ReviewHow to Speed up the Code Review

How We Build Sulu CMS: How We Build Sulu CMS:
10 Tips for Creating an Excellent Developer 10 Tips for Creating an Excellent Developer
ExperienceExperience

February 2020
Volume 19 - Issue 2

Oscar
Free Sample

We are the longest-running
PHP developer conference
in the US. This year broken
into three tracks on Tech
Leadership, PHP
Development, and Web
Technologies.

May 18-21, 2020
Nashville, TN — Opryland

tek.phparch.com

On Sale!

Save $200

Full Schedule
Published!

a php[architect] guide

Integrating with another web site but
an API is not available?

Web scraping is a time-honored technique for collecting the
information you need from a web page. In this book, you’ll
learn the various tools and libraries available in PHP to
retrieve, parse, and extract data from HTML.

Web Scraping with PHP, 2nd Edition includes updates to
the techniques of the first edition to account for modern
PHP 7 based libraries written to more easily interact with
web markup and data.

•	 HTTP requests and responses
•	 PHP’s HTTP Stream wrapper
•	 Using the cURL extension
•	 Working with the pecl_http extension
•	 Parsing responses with Guzzle
•	 Zend Framework’s HTTP classes
•	 An overview of Symfony’s libraries for web automation
•	 Writing a client from scratch
•	 Extensions for parsing and tidying XML and HTML
•	 Using regular expressions
•	 … and more.

Written by PHP professional Matthew Turland, this book builds
on his expertise in creating custom web clients.

Available in Print, PDF, EPUB, and Mobi.

Order Your Copy
http://phpa.me/web-scraping-2ed

https://phpa.me/web-scraping-2ed

20 \ February 2020 \ www.phparch.com

The Workshop

GitHub Actions for Continuous Integration
Joe Ferguson

Continuous Integration (CI), or the ongoing process of integrating changes in a shared version
control repository, should be a goal of every project you work on. This month, we’re going to dive
into configuring GitHub Actions to build and test our PHP application. Then we’ll look at a larger
scale API, which also uses GitHub Actions for Continuous Integration.

The benefit of a CI system in your
software development life cycle is the
automated process of running your
application’s build and test processes to
ensure code changes won’t cause unin-
tended consequences. This automatic
process also provides quick feedback to
developers on their changes so they can
catch bugs earlier when they’re cheaper
to fix instead of impacting a customer or
client. You can run your CI systems in
house or the cloud. GitHub You can run
actions either in the cloud on GitHub’s
systems or in a GitHub Runner on your
systems if you need to keep your builds
on-premise or in your network.

Workflow
The workflow for PHP applications is

generally similar to the following steps:
1.	 Pull the latest source code, run

composer install to retrieve depen-
dencies;

2.	 run phpunit or whatever your test
suite of choice may be;

3.	 upload or share any artifacts (logs,
test failure output, etc.) for later
debugging;

4.	 and finally, notifying the user of
success or failure.

There are several services and tools
to accomplish this, and you may even
already be using them. Travis-CI1 is
one of the most prevalent services in
the open-source community because
the service is free for open-source
projects. CircleCI2 is another similar
service featuring a free tier and several
advanced paid features such as auto-
scaling and access to faster clusters.

1	 Travis-CI: https://travis-ci.org
2	 CircleCI: https://circleci.com

GitLab also has a service3 and makes
it easy to get up and running on your
systems. You could also be using some-
thing like Jenkins4 or TeamCity5 to
accomplish similar tasks of building
and testing your application. While
there is nothing wrong with these
services, I was curious about GitHub’s
offering since I’m already using GitHub
for 90% of my projects. I’m also excited
by the idea I could remove the depen-
dency on one of the several third-party
applications I depend on. Even if you
use a service other than GitHub, the
concepts and steps required are likely
similar to what I set up.

GitHub Actions allows you to run
specific actions on every branch or pull
request in your repository directly in
GitHub. Actions are workflows you can
use to build and test your projects in
an automated fashion to give you more
confidence in merging pull requests and
fixing bugs as you can see the results of
the build and test processes directly in
your pull requests.

Our primary focus is to configure
GitHub Actions to install our depen-
dencies and run our tests. If everything
passes, we should allow merging the
pull request. We should also ensure
we’re testing different versions of PHP
to ensure compatibility. Since this is a
library which others can use, we should
support as many versions as possible
to allow flexibility to our potential
users. My own rule of thumb is to try
to support all PHP versions that are

3	 GitLab also has a service:
https://docs.gitlab.com/ee/ci/
4	 Jenkins: https://jenkins.io
5	 TeamCity:
https://www.jetbrains.com/teamcity/

still supported by PHP.net. We can
also find and use workflows created
by others via the GitHub Marketplace6
where there are currently 43 Actions
matching a search query for "PHP". We
can start with these user-contributed
workflows or build our own via the
Workflow Editor. The Workflow Editor
is the web-based configuration tool for
GitHub Actions.

Pricing And Limits
GitHub actions are free to use with

public repositories. However, if you’re
itching to get started with them in a
private project, you need to have at
least a “GitHub Pro”-level paid account.
GitHub Pro includes 1GB of storage
and 3,000 minutes (of actions run
time) per month. “GitHub Team” level
accounts increase those limits to 2GB
storage and 10,000 minutes per month,
while “GitHub Free” public repositories
have 500MB storage and 2,000 minutes
free per month.

You can choose to run your builds on
Linux, Windows, or macOS. The build
minutes for Windows and macOS are
consumed at different rates than Linux.
Windows builds consume minutes at
two times while MacOS consumes build
minutes at 10 times the rate of Linux
systems. Given the expense can poten-
tially get out of control, GitHub easily
allows us to set and manage spending
limits to ensure there are no surprises
in our monthly invoice. You can find
more information about setting up

6	 GitHub Marketplace:
https://github.com/marketplace?type=actions

Sam
ple

phparch.com
https://travis-ci.org
https://circleci.com
https://docs.gitlab.com/ee/ci/
https://jenkins.io
https://www.jetbrains.com/teamcity/
https://github.com/marketplace?type=actions

 www.phparch.com \ February 2020 \ 21

GitHub Actions for Continuous Integration

The Workshop

these spending limits at GitHub’s docu-
mentation7.

The next limit to be aware of is the
number of concurrent jobs we can have
running. When starting, the GitHub
Free plan limits us to 20 concurrent
jobs, while the GitHub Pro limit is 40.
Any jobs created while we have the
maximum number of concurrent jobs
already running queue automatically
and execute once the queue drains.

Example Project—PHP
Easy Math

We’re going to ease our way into
GitHub Actions by using an example
repository longtime readers should
recognize, PHP Easy Math8. We
currently have the Easy Math repo
configured to work with Travis-CI via
the following configuration stored as
.travis.yml in the root of our project;
see Listing 1.

This configuration explains to
Travis-CI our code is a PHP project
which we want to execute against two
different versions of PHP: 7.4 and
nightly. We allow the nightly build to
fail without causing the entire build
to fail. Before we run our main script,
we want to run composer install, and
the main script we want to execute is
vendor/bin/phpunit. We’ve created in
Travis-CI the most basic PHP build
setup to set up and test our project.

When viewing our PHP Easy Math
repo, we can click on the Actions link
to begin setting up our workflow (see
Figure 1).

GitHub makes some assumptions
based on my account and offers me
Laravel and PHP workflows right off the
bat. We select the option on the right to
set up the generic PHP workflow and
clicking on Set up this workflow takes
us to a default configuration file. We’ll
proceed to commit this file to master
located at .github/workflows/php.yml
with the contents shown in Listing 2.

7	 GitHub’s documentation: https://phpa.me/github-spending-limit
8	 PHP Easy Math: https://github.com/svpernova09/php-easy-math

Listing 1

 1. language: php
 2. php:
 3. - ‘7.4’
 4. - nightly
 5. matrix:
 6. allow_failures:
 7. - php: nightly
 8. before_script: composer install
 9. script: vendor/bin/phpunit

Listing 2

 1. name: PHP Composer
 2. on: [push]
 3. jobs:
 4. build:
 5. runs-on: ubuntu-latest
 6. steps:
 7. - uses: actions/checkout@v1
 8. - name: Report PHP version
 9. run: php -v
10. - name: Validate composer.json and composer.lock
11. run: composer validate
12. - name: Install dependencies
13. run: composer install —prefer-dist —no-progress —no-suggest
14. - name: Run test suite
15. run: vendor/bin/phpunit

Figure 1

Sam
ple

phparch.com
https://phpa.me/github-spending-limit
https://github.com/svpernova09/php-easy-math

22 \ February 2020 \ www.phparch.com

GitHub Actions for Continuous Integration

The Workshop

Note that we’re not using the
--no-dev flag in our composer
install because we want to install
our testing utilities (PHPUnit).
Remember to always use --no-dev
in production so you don’t install
your testing tools, which could be
an entry point for attackers9.

This workflow configuration file
tells GitHub Actions on every push we
want to run a job named build with the
defined configuration. The build job
contains the following line to run our
job on the latest Ubuntu Linux image,
and the steps section describes which
actions to take.

runs-on: ubuntu-latest

Our steps are processed in the order
listed to:
1.	 Check out the current branch and

commit,
2.	 report our PHP version,
3.	 validate our Composer files,
4.	 install dependencies,
5.	 and run our test suite.

You can see the GitHub Actions
output right away via the Actions tab10,
and we can inspect the result of our
Actions workflow shown in Figure 2.

We’ve already added some function-
ality we weren’t previously using on
Travis-CI by running composer vali-

date before installing our dependencies.
If you’re not familiar with Composer’s
validate11 functionality, it checks if
your composer.json file is valid. It’s
designed to be used before committing
any changes; however, in our use case,
it catches any issues in case we forget
to run validation ourselves. This line
prevents us from attempting to merge
changes in our Composer files, which
may cause parsing errors. The validate
command fails if the JSON isn’t valid.

9	 an entry point for attackers:
https://phpa.me/phpunit-install-webserver
10	 Actions tab:
https://phpa.me/php-easy-math-actions
11	 validate:
https://phpa.me/composer-validate

So far, we’re only testing with the
default PHP version set by GitHub
Actions, which the “Report PHP version”
step reports as 7.4.1. According to
Software installed on GitHub-hosted
runners12, other PHP versions available
are 7.3, 7.2, and 7.1. Since the default
seems to be 7.4, we assume we can run
against any of these four versions. You
may notice we’re using ubuntu-latest
which is currently the same as speci-
fying ubuntu-18.04. You may want to
be explicit in the image you define, as
eventually the next LTS Ubuntu image
becomes ubuntu-latest. If you need an

12	 Software installed on
GitHub-hosted runners:
https://phpa.me/github-software-runners

older version, you could also specify
ubuntu-16.04 for the older LTS version.

We’ll add a strategy and matrix
containing an array of the PHP versions
we want our project to execute against
(Listing 3). We’ll specify the versions
of PHP we know about via our config-
uration except 7.1 since our Easy
Math library requires at least PHP 7.2
(.github/workflows/php.yml).

Figure 2

Listing 3

 1. jobs:
 2. build:
 3. runs-on: ubuntu-latest
 4. strategy:
 5. fail-fast: false
 6. matrix:
 7. php: [‘7.4’, ‘7.3’, ‘7.2’, ‘8.0’]
 8. name: PHP ${{ matrix.php }}
 9. steps:
10. - uses: actions/checkout@v1
11. - name: Install PHP
12. uses: shivammathur/setup-php@master
13. with:
14. php-version: ${{ matrix.php }}
15. - name: Report PHP version
16. run: php -v

Sam
ple

phparch.com
https://phpa.me/phpunit-install-webserver
https://phpa.me/php-easy-math-actions
https://phpa.me/composer-validate
https://phpa.me/github-software-runners

 www.phparch.com \ February 2020 \ 23

GitHub Actions for Continuous Integration

The Workshop

We’ve added our PHP version matrix
as well as named the sets of our tests
the same as PHP versions, so when our
action workflow runs, we get a section
for each PHP version to see the results
from each as in Figure 3.

Now, every time we push to a branch,
GitHub Actions runs our tests and
report any issues.

You might have noticed we started
right off using a couple of Actions
from the marketplace created by other
users. The first is the actions/checkout@
v1, which checks out our branch
from version control. The second is
a powerful action built by Shivam
Mathur: Setup PHP13, which is how
we specify specific versions of PHP to
test against. The Setup PHP Action also
supports installing PHP extensions,
setting INI values, and more.

The last bit of functionality to repli-
cate from Travis-CI is to test “nightly”
or the next version of PHP. Currently,
this refers to PHP version 8.0. We can
add this to our matrix configuration:

php: ['7.4', '7.3', '7.2', '8.0']

Since we want to allow specifically 8.0
to fail, we need to configure GitHub’s

“Branch protection rules” to enforce
specific workflow steps to pass before
a pull request can be merged. (You can
also force this on administrators to
keep everyone on the up-and-up). In
our repository, navigate to the Settings
tab and click on the Branches link in the
left column. We add a rule to the master
branch and check the option labeled

“Require status checks to pass before
merging,” and in the Status Checks box
below, we’ll select PHP 7.2, PHP 7.3,
and PHP 7.4 from the list. Scrolling to
the bottom, we’ll click Save changes to
create our rule (see Figure 4).

Now, we can open a pull request, and
GitHub Actions runs our workflow
again. However, we can still merge this
pull request even if the PHP 8.0 build
fails. If we look specifically at this pull
request14, we see our required steps

13	 Setup PHP:
https://github.com/shivammathur/setup-php
14	 this pull request:
https://phpa.me/php-easy-math-p9

have passed despite the build failing
on PHP 8.0 (Figure 5 on the next page).
We are clear to merge to the protected
master branch.

While this is not nearly as intuitive
as Travis-CI’s allow_failures: setting,
it is an easy way to keep an eye on the
future PHP versions you want to ensure
support for. While I recommend this
approach for libraries, you can remove

the matrix complexity altogether and
only test a specific version if your appli-
cation only needs to run on PHP 7.4.

Remember, we only have a certain
allotment of minutes per month, and
we should put effort into caching our
builds for them to run faster. By doing
so, we spend fewer minutes running
our builds and also get faster feedback
on changes. To tell GitHub Actions

Figure 4

Figure 3

Sam
ple

phparch.com
https://github.com/shivammathur/setup-php
https://phpa.me/php-easy-math-p9

24 \ February 2020 \ www.phparch.com

GitHub Actions for Continuous Integration

The Workshop

to cache our dependencies, add the
following two steps before our “Install
Dependencies” step; see Listing 4.

When we push these changes, our
Actions run checks our cache before
downloading and installing the
dependencies again, resulting in faster
execution time. The caching is keyed to
composer.lock file changes. Whenever
you update it, the cache automatically
updates on the next run.

Now, we’re clear to remove the
travis-ci.yml file from our project.
We can disable the Travis-CI GitHub
integration since we’ve duplicated the
functionality in GitHub Actions.

Practical Action Usage
Example applications are all fun and

games until you try to apply these ideas
to a real-world application. I can share
a real-world use of GitHub Actions for
the Joind.in API15, an open-source API
project which powers the event speaker
feedback site Joind.in. For the sake of
transparency, I am one of the Joindin
project maintainers, and I worked with
Andreas Möller16 who converted the
Travis-CI workflow to GitHub Actions17.
The pull request Andreas did was my
first exposure with GitHub Actions,
and it was a pleasant experience from
the maintainer side of the project. Once we were comfort-
able with the workflows, it became just as invaluable as our
Travis-CI configuration. Now we (Joindin) have removed that
third-party process from the project, so there is one less place
to have to visit to find information.

Inspecting the .github/workflows/continuous-integration.
yml in the joindin/joindin-api repository, you can see there
are multiple jobs defined where PHP Easy Math only had one
job named “build.” The workflow defines four jobs to execute:
dependency analysis, static analysis, tests, and mutation tests.
Doing so allows us to easily categorize and organize several
tools to ensure not only that our tests pass, but our static
analysis tools also pass. Here’s an example of one way the
joindin-api uses PHPStan to analyze the codebase to enforce
the preferred code style:

- name: "Run static analysis with phpstan"
 run: vendor/bin/phpstan analyze —configuration=phpstan.neon

15	 Joind.in API: https://github.com/joindin/joindin-api
16	 Andreas Möller: https://github.com/localheinz
17	 workflow to GitHub Actions: https://phpa.me/joinin-api-p714

If PHPStan finds an issue, it can cause a build to fail with the
error message it found, so the code quality can automatically
be enforced across the entire project. I wrote about PHPStan
and static analysis in the January 2019 issue18, which you’ll
want to read to learn more about static analysis tools.

Much of what we’ve implemented in the joindin-api
GitHub Actions workflow is slightly different syntax but
follows the same procedure we went through with PHP Easy
Math. We clone the source code, install our dependencies,
check for syntax errors and code quality metrics, run our test
suite, collect any errors, and upload reports to display code
coverage over time. Just like our example repository, we cache
dependencies, so we’re able to execute our builds faster by not
waiting for downloads every time.

- name: "Cache dependencies installed with composer"
 uses: actions/cache@v1
 with:
 path: ~/.composer/cache
 key: php-${{ matrix.php-version }}-composer-locked
-${{ hashFiles(‘**/composer.lock’) }}
 restore-keys: |
 php-${{ matrix.php-version }}-composer-locked-

18	 January 2019 issue: https://phparch.com/magazine/2019/jan/

Figure 5

Listing 4

 1. - name: Get Composer Cache Directory
 2. id: composer-cache
 3. run: echo “::set-output name=dir::$(composer config cache-files-dir)”
 4. - name: Cache dependencies
 5. uses: actions/cache@v1
 6. with:
 7. path: ${{ steps.composer-cache.outputs.dir }}
 8. key: ${{ matrix.php }}-composer-${{ hashFiles(‘**/composer.lock’) }}
 9. restore-keys: ${{ matrix.php }}-composer-

Sam
ple

phparch.com
https://github.com/joindin/joindin-api
https://github.com/localheinz
https://phpa.me/joinin-api-p714
https://phparch.com/magazine/2019/jan/

 www.phparch.com \ February 2020 \ 25

GitHub Actions for Continuous Integration

The Workshop

If any of these steps may fail, the entire build can be failed as
well. However, because there is so much happening, we may
not expect everything to build perfectly all the time. If we
look at the master branch protected rules for the joindin-api
repo, we see “Dependency Analysis (7.3), Static Analysis (7.3),
and Tests (7.3)” are the required jobs which must pass for the
entire build to be considered passing. These settings give the
flexibility of having a lot of analysis and inspection happening
on the codebase while requiring the bare minimums to pass
and allow deploying a build (Figure 6).

Fire Up Those Actions!
We’ve covered the basics and then waded to explore inter-

mediate to advanced usage of GitHub Actions. For further

reading, find their excellent documentation19, and you’ll also
discover contexts and expression syntax20 interesting. Start
with the basics and don’t worry if you feel overwhelmed. Your
goal should be to follow at least the PHP Easy Math example
of building your project by installing dependencies and then
executing your test suite. Even if you don’t set your builds to
fail when it finds issues, this is a great start! Keep fixing the
issues reported until you can enable build failures. This leads
you to the Continuous Integration promise land!

Happy Actioning!

 Joe Ferguson is a PHP developer and
community organizer. He is involved with
many different technology related initia-
tives in Memphis including the Memphis
PHP User group. He’s been married to his
extremely supportive and amazing wife for
a really long time and she turned him into
a crazy cat man. They live in the Memphis
suburbs with their two cats. @JoePFerguson

19	 excellent documentation: https://phpa.me/github-actions
20	 contexts and expression syntax:
https://phpa.me/github-context-expressions

Figure 6

Related Reading

•	 Jenkins Automation by Toni Van de Voorde, January
2019. https://phparch.com/article/jenkins-automation/

•	 Making Use of Our Robot Overlords by Brian Thomp-
son, July 2018. https://phpa.me/robot-overlords

Using Xdebug to squash bugs, identify bootlenecks, and boost productivity?

Become a Pro or Business supporter to
help ongoing development.

Supporters get help via email and
elevated issue priority.

https://xdebug.org/support support@xdebug.org

Sam
ple

phparch.com
https://twitter.com/JoePFerguson
https://phpa.me/github-actions
https://phpa.me/github-context-expressions
https://phparch.com/article/jenkins-automation/
https://phpa.me/robot-overlords

http://phpa.me/mag_subscribe

	GitHub Actions for Continuous Integration
	Joe Ferguson

