
www.phparch.com

Advanced Design Advanced Design
& Development& Development

Education Station:Education Station:
Calling all CallablesCalling all Callables

Community Corner: Community Corner:
Let’s Talk XdebugLet’s Talk Xdebug

Sustainable PHP:Sustainable PHP:
The Cost of ChangeThe Cost of Change

Security Corner:Security Corner:
Cross Site Request Cross Site Request
ForgeryForgery

PHP Puzzles: PHP Puzzles:
Calculating Fibonacci Calculating Fibonacci
SequencesSequences

The Workshop: The Workshop:
Blasting Off with Blasting Off with
CodeIgniter 4CodeIgniter 4

finally{}:finally{}:
A Question for You: The A Question for You: The
Future of Conferences?Future of Conferences?

ALSO INSIDE

Asynchronous Programming in PHPAsynchronous Programming in PHP

Building a REST API from ScratchBuilding a REST API from Scratch

Browser APIs: Browser APIs:
The Unknown Super HeroesThe Unknown Super Heroes

June 2020
Volume 19 - Issue 6

a php[architect] anthology

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@ grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

https://phpa.me/devlead-book
http://phpa.me/grumpy-testing-book

a php[architect] anthology

Order Your Copy
http://phpa.me/fizzbuzz-book

Tackle Any Coding
Challenge With Confidence

Companies routinely incorporate coding
challenges when screening and hiring new
developers. This book teaches the skills
and mental processes these challenges
target. You won’t just learn “how to learn,”
you’ll learn how to think like a comput-
er. These principles are the bedrock of
computing and have withstood the test of
time.

Coding challenges are problematic but
routinely used to screen candidates for
software development jobs. This book
discusses the historical roots of why they
select for a specific kind of programmer.
If your next interview includes a coding
exercise, this book can help you prepare.

Available in Print, Kindle Unlimited,
and Kindle Lending Library

https://phpa.me/fizzbuzz-book

 www.phparch.com \ June 2020 \ 25

Education Station

Using Xdebug to squash bugs, identify bootlenecks, and boost productivity?

Become a Pro or Business supporter to
help ongoing development.

Supporters get help via email and
elevated issue priority.

https://xdebug.org/support support@xdebug.org

Calling all Callables
Chris Tankersley

When facing a challenging problem, you want a flexible codebase that adapts quickly. Object-
oriented programming facilitates it by giving you the power through inheritance, encapsulating
code in reusable objects, and generally making them work for your application as you see fit.
However, we can find flexibility in other programming approaches.

Languages such as JavaScript, which until very recently had
a vastly different concept of an object, relied heavily on the
idea of Callables and Callbacks. JavaScript uses objects and
structures that can be called like functions and encourages
a programming paradigm of passing these “Callable” objects
around.

As it turns out, PHP has had a similar way of functioning
for a very long time. The use of Callables and Callbacks in
PHP has grown as the language has taken inspiration from
other languages like JavaScript (though I am still on the fence
about arrow functions).

Let’s take a look at how we can use these ideas in PHP and
provide even greater flexibility in our code.

Why?
Every language is different, and those differences help

frame the decisions that we make when it comes to writing
our code. I love PHP, but there are some things that I miss
from other languages as well. Python’s decorators, or anno-
tations you can attach to functions that modify their output
and invocation, are powerful tools for making code do what
I want. Using callables can make your application more
adaptable without requiring a full-blown object, or having to
anticipate the methods you need to define. You can short-cir-
cuit this by setting expectations for what the callable should
or should not return.

The Old Way
PHP has supported the general idea of a callback since the

PHP 4 days. A callback is another piece of code, typically
a function, passed as a parameter to a method or function
and is executed after the original code runs. In most circum-
stances, the original function will pass data into that second
function.

The earliest instance of this is the call_user_func()1 func-
tion and it’s companion, call_user_func_array()2, which are
still handy today. call_user_func() relies on being passed a
function to call as the first argument. Any additional argu-
ments passed to create the function are called as arguments
to the new function.

Let’s say we need to add two numbers together, and then
modify them in some way. We don’t know how the numbers
will be changed, that is up to the developer. We can write a
function that takes the two numbers, and the name of a func-
tion to modify the output as in Listing 1.

Here we define two modifier functions—square() and
cube(). Since these are named functions, we can pass their
names into our addAndModify() function, and use call_user_
func() to invoke the appropriate method for us. We’ve made
addAndModify() more flexible by not hard coding what modi-
fication is applied to the numbers we add together. We’re not
limited to passing in the names of custom functions, either.
We can pass in any PHP native function too.

What if you don’t have a function, but you have a method
on an object? Well, call_user_func() can take an array
containing a class name and method name as the first param-
eter. How would that look? See Listing 2.

Instead of passing a function name, in this case, we have
passed an array with our class name, Modifiers, and the method
name we want to call (either square() or cube()). Functionally
this is the same as having two functions, but it does allow us
to use encapsulation to structure our code more cleanly.

The keen-eyed among you may ask, “What about classes
that have constructor dependencies?” Good catch! There
is a third way that you can invoke a method call, and that’s

1 call_user_func(): https://php.net/function.call-user-func
2 call_user_func_array():
https://php.net/function.call-user-func-array

Listing 1

 1. <?php
 2.

 3. function square(int $num) {
 4. return $num * $num;
 5. }
 6.

 7. function cube(int $num) {
 8. return $num * $num * $num;
 9. }
10.

11. function addAndModify(int $num1, int $num2, string $modifier) {
12. $total = $num1 + $num2;
13. return call_user_func($modifier, $total);
14. }
15.

16. echo addAndModify(1, 2, 'square'); // 9
17. echo addAndModify(1, 2, 'cube'); // 27

phparch.com
https://php.net/function.call-user-func
https://php.net/function.call-user-func-array

26 \ June 2020 \ www.phparch.com

Education Station
Calling all Callables

passing an instantiated object. It looks the same, and we pass
the object instead of the class name as shown in Listing 3.

The difference is that we instantiate the object we want to
call, instead of just passing the name.

When it comes to call_user_func(), none of these invoca-
tions are better than the other, so use whatever way works
with your code.

Anonymous Functions
call_user_func() and its associated syntax is nice, but PHP

5.3 took things a step further. It introduced the concept of
“Anonymous Functions,” which allowed binding a function
invocation to a variable or using them for one-time encapsu-
lation. Using this feature, we could now pass around functions
like any other variable.

OK, I’m lying just a little bit. Technically, PHP 4 had
create_function() which created a randomly named
function. You could assign that name to a variable and
then invoke that variable. It was inefficient and a security
vulnerability due to its internal use of eval(). Don’t use it.
Thankfully it’s deprecated. On that note, don’t use eval()
directly to create a new function either.

An anonymous function is a function without a concrete
name. They can be used any place that accepts a callable
construct, so let’s go back to our original example and look at
how we can make each function a variable (Listing 4).

Instead of having named functions called increment()
and decrement(), we stuffed the functions into appropriately
named variables. Unlike a standard function declaration, we
have the = assignment operator, and we don’t give the func-
tion a name. We go straight from the function keyword to
defining the parameters. We also have a semicolon at the
end of the closing curly brace, since this is all technically one
operation.

We can then pass these functions around in place of the
array or string invocations we were using. Doing so allows us
to take advantage of scoping, as these functions will exist only
the appropriate scope, but at the same time can be passed and
returned like any other value. Since call_user_func() accepts
any callable, these anonymous functions slot right in and
work as we expect! We’ll see when this is useful shortly.

Listing 2

 1. <?php
 2.

 3. class Modifiers
 4. {
 5. public function square(int $num) {
 6. return $num * $num;
 7. }
 8.

 9. public function cube(int $num) {
10. return $num * $num * $num;
11. }
12. }
13.

14. function addAndModify(int $num1, int $num2,
15. array $modifier) {
16. $total = $num1 + $num2;
17. return call_user_func($modifier, $total);
18. }
19.

20. echo addAndModify(1, 2, [Modifiers::class, 'square']); // 9
21. echo addAndModify(1, 2, [Modifiers::class, 'cube']); // 27

Listing 3

 1. <?php
 2.
 3. class Modifiers
 4. {
 5. protected $baz;
 6.
 7. public function __construct(Foo $bar) {
 8. $this->baz = $bar;
 9. }
10.
11. public function square(int $num) {
12. return $num * $num;
13. }
14.
15. public function cube(int $num) {
16. return $num * $num * $num;
17. }
18. }
19.
20. function addAndModify(int $num1, int $num2,
21. array $modifier) {
22. $total = $num1 + $num2;
23. return call_user_func($modifier, $total);
24. }
25.
26. $modifier = new Modifiers(new Foo());
27. echo addAndModify(1, 2, [$modifier, 'square']); // 9
28. echo addAndModify(1, 2, [$modifier, 'cube']); // 27

Listing 4

 1. <?php
 2.

 3. $square = function (int $num) {
 4. return $num * $num;
 5. };
 6.

 7. $cube = function (int $num) {
 8. return $num * $num * $num;
 9. };
10.

11. function addAndModify(int $num1, int $num2,
12. callable $modifier) {
13. $total = $num1 + $num2;
14. return call_user_func($modifier, $total);
15. }
16.

17. echo addAndModify(1, 2, $square); // 9
18. echo addAndModify(1, 2, $cube); // 27

phparch.com

 www.phparch.com \ June 2020 \ 27

Education Station
Calling all Callables

I did make one other small change, and that was the type
hint I used for the $modifier parameter. PHP 5.4 introduced
the callable type hint, which encompasses both the array
syntax that we used previously with call_user_func() but
also a class that implements __invoke(). We get the safety of
a type hint but the ability to use the old syntax still. I will be
using this type hint going forward.

Assigning a function to a variable can be useful when we
need to re-use the function in multiple places. What happens
when we need to help deal with scope issues as opposed to
portability? We can define an anonymous function directly
where a callable is expected as in Listing 5.

This time, instead of directly assigning the function to a
variable, we pass it to addAndModify(). PHP stuffs it into $modi-
fier, and it works fine with call_user_func() because this is a
callable. This syntax is excellent when you need to help scope
a portion of code, but do not need to re-use it afterward.
Many times this is used with the various array functions, such
as passing a function to usort()3 for custom sorting.

I also made another syntax change. See if you can figure out
what it was… go ahead, I have time. I mean, I already wrote
all this, so I can wait as long as needed.

I changed the syntax for how we call our callable. I removed
call_user_func() and just invoked the function like any other
function, except it has a dollar sign at the beginning to refer
to the variable holding the anonymous function. As it turns
out, we can invoke any callable this way.

PHP tries to see if it is invokable if you put parentheses at
the end of a variable.

$result = $canDoSomething();

The invokable array syntax is called correctly, the same as a
function assigned to a variable. This syntax makes our code
even more readable. I am using that syntax going forward.

Lambdas, Closures, And Anonymous Functions
There are a few definitions and constructs that exist around

the idea of “anonymous functions.” It is close to the argu-
ment that all squares are rectangles, but not all rectangles are
squares.

From a computer science perspective, a lambda is just an
“anonymous function.” Some languages like Python make a
slight distinction, but these terms are effectively interchange-
able under PHP. They are both functions that have no name.

In PHP, an anonymous function has the same scoping
mechanism as any other function. It knows only of the
parameters it is designed to accept. Any variables it creates—
and any global variables you pull in via global, but we’re not
monsters. If you want access to some bit of data, you must
pass it in.

Closures are anonymous functions that have some limited
knowledge of the world around them. The use keyword

3 usort(): https://php.net/function.usort

allows a closure to “use” external things without needing to
pass them in directly by the calling code—which may not
know about that variable at all.

In Listing 6, we allow the $increment anonymous func-
tion to access a new variable named $incrementBy. It turns it
semantically into a closure. $incrementBy is defined outside of
the function itself, but we make its value available inside of
the closure. Another small gotcha is that the value of the use
parameters is that their values are set at definition time, not
invocation time.

$name = 'Bob';
$welcomer = function($message) use ($name) {
 echo $message . " " . $name;
};
$name = "Alice";

$welcomer("Hello");
// Hello Bob

This code binds $name to the closure, but all the standard
parameter passing rules apply. By default, PHP will pass
scalar objects by value and objects by reference. You can
force passing by reference using the & modifier, so the syntax
becomes use (&$incrementBy).

Listing 5

 1. <?php
 2.

 3. function addAndModify(int $num1, int $num2,
 4. callable $modifier) {
 5. $total = $num1 + $num2;
 6. return $modifier($total);
 7. }
 8.

 9. echo addAndModify(1, 2, function (int $num) {
10. return $num * $num;
11. }); // 9
12. echo addAndModify(1, 2, function (int $num) {
13. return $num * $num * $num;
14. }); // 27

Listing 6

 1. <?php
 2.

 3. $incrementBy = 2;
 4. $increment = function ($num) use ($incrementBy) {
 5. return $num + $incrementBy;
 6. };
 7.

 8. function addAndModify(int $num1, int $num2,
 9. callable $modifier) {
10. $total = $num1 + $num2;
11. return $modifier($total);
12. }
13.

14. echo addAndModify(1, 2, $increment); // 5

phparch.com
https://php.net/function.usort

28 \ June 2020 \ www.phparch.com

Education Station
Calling all Callables

$this works differently when creating closures. If we create
a closure inside of an object, it gets scoped to that object. We
can shift this around if we need to, in any case (Listing 7).

In this case, we create a closure that would normally incre-
ment by one, but by re-binding it to the second instance with
the increment of 2, we changed from where it can pull data.

Invokable Objects
Between call_user_func() and anonymous functions, we

have a few ways of handling functions and passing them
around. PHP 5.3 went even further and introduced the
__invoke()4 magic method. It makes classes invokable all
by themselves, which gives us the power of object-oriented
programming alongside callables.

If a class implements the __invoke() magic method, then
an instantiated object can be called and used as a function.
You can pass arguments into the invocation, and it can return
data. For all intents and purposes, it works like a function. __
invoke() can be defined with as many parameters as you need.

An everyday use case for this type of functionality is in the
concept of “Action Domain Responder,” or ADR. It’s a web
application structure where a single class represents each
Action (or URL). This class handles all the work for that
particular URL. This approach is different from “Model View
Controller”, or MVC, where your controller classes generally
encapsulate various actions as methods.

If we have a website with a homepage (“/”) and an admin
page (“/admin”), it equates to two Action classes. Let’s repre-
sent them as HomepageAction and AdminAction. We can store
those class names in an array that maps them to a requested
route. When a route is requested, we can look up the class

name, instantiate an object with its dependencies, and call the
object as a function as in Listing 8.

When we call $action(), the PHP engine checks to see if
$action has implemented __invoke(). If the class has, it calls
that method. If we request /admin, effectively we end up
calling the __invoke() method on the AdminAction class.

By implementing __invoke(), in Listing 9 we now get
something more manageable to pass around in our code.
We can even take this invokable class and pass it into
call_user_func()!

Doing so makes our code clearer. We can create classes that
do one specific job, which perfectly fits the Single Responsi-
bility idea (each class should affect one change in the system).
While encapsulating both increment() and decrement() into

Listing 7

 1. <?php
 2.
 3. class Increment
 4. {
 5. public $incrementBy = 1;
 6.
 7. public function getClosure() {
 8. return function ($num) {
 9. return $this->incrementBy + $num;
10. };
11. }
12. }
13.
14. function addAndModify(int $num1, int $num2,
15. callable $modifier) {
16. $total = $num1 + $num2;
17. return $modifier($total);
18. }
19.
20. $one = new Increment();
21. $two = new Increment();
22. $two->incrementBy = 2;
23.
24. $oneClosure = $one->getClosure();
25. $oneClosure = $oneClosure->bindTo($two);
26. echo addAndModify(1, 2, $oneClosure); // 5

Listing 8

 1. <?php
 2.
 3. class HomepageAction
 4. {
 5. public function __invoke() {
 6. echo "Hello World";
 7. }
 8. }
 9.
10. class AdminAction
11. {
12. public function __invoke() {
13. echo "Secret Admin Area";
14. }
15. }
16.
17. $routes = [
18. '/' => HomepageAction::class,
19. '/admin' => AdminAction::class,
20.];
21.
22. If (!empty($routes[$_SERVER['REQUEST_URI']])) {
23. $className = $routes[$_SERVER['REQUEST_URI']];
24. $action = new $className();
25. $action();
26. }

Listing 9

 1. <?php
 2.
 3. class Square
 4. {
 5. public function __invoke(int $num) {
 6. return $num * $num;
 7. }
 8. }
 9.
10. function addAndModify(int $num1, int $num2,
11. callable $modifier) {
12. $total = $num1 + $num2;
13. return $modifier($total);
14. }
15.
16. echo addAndModify(1, 2, new Square()); // 9

phparch.com

 www.phparch.com \ June 2020 \ 29

Education Station
Calling all Callables

the old Modifiers class makes some sense as they both modify
a number, having bespoke classes is even clearer.

Promises
If you have worked with older Node.js code, or any async

PHP code, you may have come across this idea of “Callback
Hell.” This situation arises where you have callbacks that have
callbacks that have callbacks. You end up with this nested
mess of code that is very hard to move around and even inter-
pret sometimes.

I love the array functions, but many of them use call-
backs, and it is very easy to fall into callback hell with them,
especially if you need to chain multiple operations together.
Callbacks are perfectly fine until it impacts readability and
maintainability.

Read the code in Listing 10. Try to figure out what I’m
doing, and in what order everything happens.

This code finds all the active users with a balance of “10” or
higher and totals it all up. This operation is essentially a very
filter-and-reduce block of code, but this is very close to what
can happen when it comes to overusing the idea of callbacks,
especially anonymous ones.

In asynchronous code, this flow happens frequently. Async
code works on generating new jobs based on existing work-
loads, and the callback paradigm fits well into this. Throw in
PHP’s flexible callable infrastructure and you have a mess
waiting to happen.

Most of the time, this happens when developers from more
function-first languages, like JavaScript, try and replicate
their workflows in PHP. PHP has some additional language
constructs, like our callables and object structure, that make
this chaos more manageable.

Since PHP has a more defined object structure, I would
recommend taking your callbacks and moving them into
invokable classes. This change removes a lot of the boilerplate

from the business logic and moves things into their code
blocks. The improved readability would be more than
welcome with this block of code.

In the JavaScript world, this problem bore out a solution:
Promises/A+. These are an attempt to provide some structure
to dealing with feeding data into one end of a pipeline and
getting data out at the other, without knowing what those
pipelines would look like or the order of execution.

Promises/A+, or more commonly just known as Promises,
add an object-oriented wrapper for defining the order to
call our callables and efficiently handling errors. A Promise
is essentially two callables. One handles incoming data, and
the other handles if there are any exceptions thrown. You can
then chain these promises together into a workflow pipeline.

Guzzle, the HTTP client has a Promises implementation
called Guzzle Promises5. If you are interested in seeing how
Promises could work within the confines of PHP, I would
recommend taking a look at that library.

Old Tricks In a Modern Era
PHP has been able to do most of this for a very long time,

but because developers tend to focus on object-oriented
programming, it is a part of PHP that gets overlooked. Call-
backs and Callables are something you should understand
and all to your toolbox.

The next time you write code, try and see how others may
want to extend it. Instead of only focusing on how you can
extend an individual class, look at how you can let other
developers add additional steps to your workflows through
callbacks. Are you writing something that a user may want
to do further processing on, like data filtering or text manip-
ulation?

Do not be afraid to sprinkle in some callbacks. Just watch
out for Callback Hell.

 Chris Tankersley is a husband, father,
author, speaker, podcast host, and PHP
developer. He spends most of his day
working in PHP and Python. He is the
author of Docker for Developers and
works with companies and developers for
integrating containers into their workflows.
@dragonmantank

Listing 10

 1. <?php
 2.

 3. $a = [
 4. ['name' => 'Bob', 'active' => 1, 'balance' => 10],
 5. ['name' => 'Alice', 'active' => 1, 'balance' => 10],
 6. ['name' => 'Jane', 'active' => 0, 'balance' => 0],
 7. ['name' => 'John', 'active' => 1, 'balance' => 5],
 8. ['name' => 'Bill', 'active' => 0, 'balance' => 10],
 9. ['name' => 'Jan', 'active' => 1, 'balance' => 10],
10.];
11.

12. $d = array_reduce(array_filter(array_filter($a, function ($b) {
13. return (bool)$b['active'];
14. }), function ($b) {
15. return $b['balance'] >= 10;
16. }), function ($c, $b) {
17. return $c + $b['balance'];
18. });

Related Reading

• Juggle Arrays Using Functional Callbacks
by Andrew Koebbe, October 2016.
https://www.phparch.com/magazine/2016-2/october/

• Removing the Magic with Functional PHP
by David Corona, July 2016.
https://www.phparch.com/magazine/2016-2/july/

phparch.com
https://twitter.com/dragonmantank
https://www.phparch.com/magazine/2016-2/october/
https://www.phparch.com/magazine/2016-2/july/

http://phpa.me/mag_subscribe

	Calling all Callables
	Chris Tankersley

