
www.phparch.com

Warp Driven Warp Driven
DevelopmentDevelopment

Education Station:Education Station:
Writing Concise CodeWriting Concise Code

Community Corner: Community Corner:
PHP 8 Release Managers: PHP 8 Release Managers:
Interview with Sara Interview with Sara
Golemon and Gabriel Golemon and Gabriel
Caruso, Part 1Caruso, Part 1

The Workshop: The Workshop:
Twig, Bulma, and Twig, Bulma, and
CodeIgniter 4 CodeIgniter 4

Sustainable PHP:Sustainable PHP:
We Got RobbedWe Got Robbed

Security Corner:Security Corner:
Information TokenizationInformation Tokenization

PHP Puzzles: PHP Puzzles:
Generating Random LootGenerating Random Loot

finally{}:finally{}:
The Dangers of Intellectual The Dangers of Intellectual
(Sounding) Arguments(Sounding) Arguments

ALSO INSIDE

Event-Driven Design With Drift PHPEvent-Driven Design With Drift PHP

Getting Started with Test-Driven Getting Started with Test-Driven
DevelopmentDevelopment

The Zen of Ego-Free PresentingThe Zen of Ego-Free Presenting

July 2020
Volume 19 - Issue 7

a php[architect] anthology

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

https://phpa.me/devlead-book
http://phpa.me/grumpy-testing-book

a php[architect] anthology

Order Your Copy
http://phpa.me/fizzbuzz-book

Tackle Any Coding
Challenge With Confidence

Companies routinely incorporate coding
challenges when screening and hiring new
developers. This book teaches the skills
and mental processes these challenges
target. You won’t just learn “how to learn,”
you’ll learn how to think like a comput-
er. These principles are the bedrock of
computing and have withstood the test of
time.

Coding challenges are problematic but
routinely used to screen candidates for
software development jobs. This book
discusses the historical roots of why they
select for a specific kind of programmer.
If your next interview includes a coding
exercise, this book can help you prepare.

Available in Print, Kindle Unlimited,
and Kindle Lending Library

https://phpa.me/fizzbuzz-book

24 \ July 2020 \ www.phparch.com

Education Station

Writing Concise Code
Chris Tankersley

There is a huge emphasis put on the code maintainability, and for a good reason. The
programming industry is rife with what we like to term “legacy code,” which boils down to
code that solves a business problem, but we, as the current maintainers, do not understand. No
language is safe from this problem.

As a codebase grows older, the lessons learned during
construction get lost to the aether. Unless we’re diligent in
updating documentation and capturing intended behavior
via tests, the business decisions that led to why a block of
code is written a certain way disappear with the writers. The
current maintainers—us—are left not to put together a puzzle,
but understand how that square peg managed to fit in the
round hole.

The first step any developer can take is the idea of “Self-Doc-
umenting Code.”1, and making sure the code indicates what
it is doing. Self-documenting code helps reduce the amount
of technical documentation which needs to be maintained
by following rules that make code more explicit. Doing so
can be achieved through well-named classes, methods, and
variables, and leaving rationales as comments. Being explicit
is preferred over being clever.

An aspect of this that gets somewhat overshadowed is the
idea of concise code. Concise code should result in less code
to maintain, so I don’t believe it goes against the “be explicit”
rule.

I do not mean we should begin writing the shortest amount
of code possible (remember, do not try and be clever). We can
do plenty of things in PHP to help us write less code, but still
be explicit in what we are doing.

The Ternary Operator
The ternary operator (?:) is generally the first concise

operator many developers encounter. We call this operator
“ternary” as it operates on three expressions to produce its
result:
1.	 a condition expression,
2.	 an expression to invoke if the condition is true,
3.	 and an expression to invoke if the condition evaluates to

false.

(expr1) ? (expr2) : (expr3)

expr1 is used as a testing expression, and this should eval-
uate to either a true or false value. expr1 can be a variable
that is a Boolean value, a comparison expression, or a func-
tion call that returns a value. What matters most is that its
goal is to provide a true or false condition.

1	 “Self-Documenting Code.”: https://phpa.me/wikip-self-documenting

expr2 is the expression returned if expr1 evaluates to true.
It can be a value, another expression, or a function call to do
more work. It is considered a best practice to keep this expres-
sion short and as uncomplicated as possible, which helps
avoid readability problems and odd resolution order bugs.
expr3 works the same as expr2; however, it is only evaluated

if expr1 is considered false.

$state = true;
echo $state? 'Valid' : 'Invalid';
// True

In PHP, we frequently use the ternary operator as short-
hand for an if/else block. This practice helps clean up code
when performing small operations. For example, if you are
writing a number guessing game and want to output a Win
or Lose message, you could write it with an if/else statement:

$win = 10;
if ($guess === $win) {
 echo 'You Win!';
} else {
 echo 'You Lose!';
}

Since the logic between the if and else statements are rela-
tively simple, we can turn that into a ternary. We can move
the comparison into expr1, the winning output into expr2,
and the losing output to expr3.

$win = 10;
echo $guess === $win ? 'You Win!' : 'You Lose!';

The ternary operator is a great way to help shorten simple
logic. If we need to do a lot more work between the if and
else flows, then the ternary operator tends to get very compli-
cated. Only use the ternary operator for simple operations.

Yes, you could chain together ternaries. I would heavily
caution against doing so, as readability suffers. Also,
the actual execution flow becomes quite tricky to keep
track of. While it may seem like a good idea because the
chain looks simple, the long-term maintenance cost goes
through the roof exponentially.

phparch.com
https://phpa.me/wikip-self-documenting

 www.phparch.com \ July 2020 \ 25

Education Station
Writing Concise Code

The Shorthand Ternary
There is an alternate syntax (since 5.3) for the ternary

operator, commonly called the Shorthand Ternary
(which not only is a longer name but turns it into a binary
operator—we can ignore the existential crisis this causes
for the ternary operator). In this format, expr1 is just
returned in place of expr2.

(expr1) ?: (expr3)
// Expands to this: (expr1) ? (expr1) : (expr3)

This operator is useful when your expr1 returns a “truthy”
value, or a value PHP considers true. PHP is a dynamic
language and still holds to the idea that different values
can be regarded as true or false for many comparisons
that are not strict (using ===). The PHP documentation
has a type comparison2 table that helps describe this.

If you have an ecommerce site, one of the things you
may want to show to the user is the number of items in
their basket. If the user has no items, you want to show
the statement “no items” instead of “0 items” to lend it
more of a conversational tone. We can take advantage of
the fact an empty array counts to 0, and 0 is considered
falsey.

In Listing 1, count($basket) is evaluated and returns
either 2 or 0. Since PHP considers non-zero integers as
true, the shortened ternary returns 2 in the first case, as it
is considered “truthy.” In the second case, 0 is evaluated as
false, so it shows the word “no.”

The Null Coalescing Operator
PHP 7 introduced another similar syntax, called the

Null Coalescing Operator (??). Null coalescing is close to
the shorthand ternary in use, but it has a slight distinction
in that, instead of testing for True or False, it tests for exis-
tence and null values. This becomes useful when looking
to see if things like array elements or return values are
defined, versus whether they test to a Boolean.

(expr1) ?? (expr2)

The syntax for this is succinct. If expr1 is defined and is not
null, return expr1. Otherwise, return expr2. This code is very
close to the shorthand ternary, but expr1 is not evaluated for
truthy-ness, just existence and value. expr1 can evaluate to a
false value and still be returned.

A typical example is hydrating an object from an array. The
object can have a method named something like fromArray(),
which takes an array and assigns the values of the array to
properties of the object. Since incoming array keys may not
exist, you have to do a lot of checking to make sure they do,
generally with the ternary operator, as in Listing 2.

2	 type comparison: https://php.net/types.comparisons

While the lines of code do not change, we can cut some of
the boilerplate code needed by switching to the Null Coalesce
Operator. It makes the code easier to scan and read (see
Listing 3).

I use it all the time when checking to see if array elements
exist and defining default values. Since it acts like isset(), it
can save a lot of additional typing and makes it clear we are
pulling the value of the array element versus something else.

Listing 1

 1. <?php
 2. $basket = [
 3. ['item' => 'Plant', 'cost' => '12.99'],
 4. ['item' => 'Shovel', 'cost' => '23.99'],
 5.];
 6. echo 'You have ' . (count($basket) ?: 'no')
 7. . ' items in your basket';
 8. // You have 2 items in your basket
 9.

10. $basket = [];
11. echo 'You have ' . (count($basket) ?: 'no')
12. . ' items in your basket';
13. // You have no items in your basket

Listing 2

 1. class MyObject
 2. {
 3. protected $id;
 4. protected $name;
 5.

 6. public function fromArray(array $data) {
 7. $this->id = isset($data['id']) ? $data['id'] : uniqid();
 8. $this->name = isset($data['name']) ? $data['name'] : '';
 9. }
10. }

Listing 3

 1. class MyObject {
 2. protected $id;
 3. protected $name;
 4.

 5. public function fromArray(array $data) {
 6. $this->id = $data['id'] ?? uniqid() ;
 7. $this->name = $data['name'] ?? '';
 8. }
 9. }

phparch.com
https://php.net/types.comparisons

26 \ July 2020 \ www.phparch.com

Education Station
Writing Concise Code

The Null Coalescing Assignment Operator
A close cousin to the Null Coalescing Operator is its assign-

ment operator (??=), which dropped in PHP 7.4. It allows you
to shorthand assignment of a variable if it does not exist, and
works in combination with arrays with the implicit isset().

(var1) ??= (expr1)

With the Null Coalescing Assignment Operator, if var1
does not exist, it is created and assigned the value of expr1. If
it does exist, it is left alone. This behavior is slightly different
in that it creates a variable, where the standard Null Coalesce
Operator returns a value.

If we have a function that takes a set of parameters, we can
use the Null Coalescing Assignment Operator to set defaults
on the values passed in, in case the user forgets to add them.
See Listing 4.

Arrow Functions
PHP 7.4 brought not only Null Coalesce Assignment but

also the idea of the arrow function3. This is an alternative
syntax for writing single-line anonymous functions in a
vaguely similar syntax to JavaScript’s arrow function4 expres-
sions.

fn(<params>) => <single line of logic>;

Let’s look at a simple function that echoes out “Hello” and
then some other word. We can write this up as a little three-
line anonymous function without much effort:

$fn = function($name) {
 return 'Hello ' . $name;
}
echo $fn('World'); // Hello World

Arrow functions allow us to take small anonymous func-
tions that only have a single unit of logic to them and rewrite
them as a one-liner. Just like any other function, arrow func-
tions generate their own scope, can pass and return data by
reference or value, and can take advantage of variadics.

$fn = fn($name) => 'Hello ' . $name;
echo $fn('World'); // Hello World

There are a few things to keep in mind with arrow functions,
however. The first is that they automatically return whatever
value they generate. In the case of our example, it produces
the string "Hello ${name}" and returns it, even without the
return keyword. Arrow functions are meant to manipulate
parameters and variables, and immediately return data.

The second is the implicit value binding. In a normal anon-
ymous function, you can bind an external variable to the
function with the use() construct. With arrow functions, any

3	 arrow function: https://php.net/functions.arrow
4	 JavaScript’s arrow function:
https://phpa.me/mozdev-arrow-functions

variables within the defining scope are automatically passed,
by value, into the arrow function. You cannot bind via refer-
ence, for that you need to use a full anonymous function.

$name = "Bob";
$fn = fn() => 'Hello ' . $name;
echo $fn(); // Hello Bob

Where is a good case to use arrow functions? They are often
used with methods that take a callback to manipulate data,
like many of the array manipulation functions. Arrow func-
tions can be cleaner than having the additional lines a full
anonymous function generates.

$array = [1,2,43,5,];
$val = array_reduce($array, fn($carry, $item) => $carry + $item);
echo $val; // 51

Avoid Removing Curly Brackets
There are some syntaxes you should avoid because they

cause problems in the long run. Remember, concise code
is meant to help remove code where it makes sense, not
necessarily to save yourself time or keystrokes. If your goal
in programming is to write the fewest characters, re-evaluate
your priorities.

One of the oldest “shortcuts” is one-liner if/else state-
ments. These are if/else statements where we can remove
the curly brackets if the code block is a single line of code.
Here, PHP follows how many curly bracket languages work.
However, it is also very easy to introduce bugs with it.

$val = true;
if ($val)
 echo "It's True!";
else
 echo "It's False!"

The problem with this syntax is that without the brackets, it
is effortless to allow logic to seep out of the if/else statements,
and even introduce syntax errors. If we add one additional
line of logic to the else portion and forget to add the curly

Listing 4

 1. function makeRequest(string $uri, array $options) {
 2. $options['timeout'] ??= 1;
 3. $options['method'] ??= 'GET';
 4. $options['limit'] ??= 10;
 5. $options['page'] ??= 1;
 6.

 7. return $client = HTTPClient::makeRequest(
 8. $uri,
 9. $options['method'],
10. [
11. 'timeout' => $options['timeout'],
12. 'page' => $options['page'],
13. 'limit' => $options['limit'],
14.]
15.);
16. }

phparch.com
https://php.net/functions.arrow
https://phpa.me/mozdev-arrow-functions

 www.phparch.com \ July 2020 \ 27

Education Station
Writing Concise Code

brackets, the new line runs regardless of
the value of $val.

$val = true;
if ($val)
 echo "It's True!";
else
 echo "It's False!"
 die("Only die if we are false");

Since PHP does not care about
whitespace, the interpreter sees the if/
else without curly brackets, associates
one the single line to those control
blocks, and the die() statement, being
the second line not included. It runs
every single time.

Concise Does Not Mean Clever

“Always code as if the guy who
ends up maintaining your code will
be a violent psychopath who knows
where you live.”

– John Woods

5	 Code Golf: https://phpa.me/wikip-code-golf

The goal of any maintainable system
should be clarity of the code, but that
does not mean we should have to write
out everything long-form. There are
some delightful syntax structures PHP
has developed/stolen over the years that
can help.

If you are interested in strictly writing
the fewest characters of code, I recom-
mend looking into Code Golf5. There
are various implementations, but the
idea is to write the smallest physical

amount of code possible to solve a
problem. The code does not need to be
intelligible; it just needs to function.

Outside of code golf, make sure you
follow the general rule of self-docu-
menting code. If you do not think you
will understand what a specific block of
code does in six months, rewrite it to
be more apparent. All the better if you
can shorten code without making it less
clear.

 Chris Tankersley is a husband, father, author, speaker,
podcast host, and PHP developer. Chris has worked with
many different frameworks and languages throughout his
twelve years of programming but spends most of his day
working in PHP and Python. He is the author of Docker for
Developers and works with companies and developers for inte-
grating containers into their workflows. @dragonmantank

Related Reading

•	 Education Station: Writing DRY, SOLID FOSS OOP CRUD Code
by Chris Tankersley, August 2019. https://phpa.me/education-aug-2019

•	 The Life-Changing Magic of Tidying Your Code
by Bryce Embry, May 2018. https://phpa.me/embry-tidying-code

•	 Building Software that Lasts by Susanne Moog, October 2017.
http://phparch.com/magazine/2017-2/october

https://phpa.me/podcast-ep-34

We talk to Security Corner contributor
Eric Mann about keeping your
website secure, how a breach sparked his
interest in security, tips for working securely
at home, and more.

Listen to Ep. 34:Listen to Ep. 34:

phparch.com
https://phpa.me/wikip-code-golf
https://twitter.com/dragonmantank
https://phpa.me/education-aug-2019
https://phpa.me/embry-tidying-code
http://phparch.com/magazine/2017-2/october

http://phpa.me/mag_subscribe

	Writing Concise Code
	Chris Tankersley

