
www.phparch.com

Data DisciplineData Discipline

Education Station:Education Station:
Effective Data TypingEffective Data Typing

Community Corner: Community Corner:
PHP 8 Release Managers: PHP 8 Release Managers:
Interview with Sara Interview with Sara
Golemon and Gabriel Golemon and Gabriel
Caruso, Part TwoCaruso, Part Two

The Workshop: The Workshop:
PHP Development With PHP Development With
Windows Subsystem for Windows Subsystem for
Linux Linux

Sustainable PHP:Sustainable PHP:
The QuestThe Quest

Security Corner:Security Corner:
Usable SecurityUsable Security

PHP Puzzles: PHP Puzzles:
Writing a Dice RollerWriting a Dice Roller

finally{}:finally{}:
Interviewing RemotelyInterviewing Remotely

AL
SO

 IN
SI

D
E

Querying NoSQL With SQL: Querying NoSQL With SQL:
HAVING Your JSON Cake and HAVING Your JSON Cake and

SELECTing It Too!SELECTing It Too!

JSON Schema Validation JSON Schema Validation
With MySQLWith MySQL

PHP and Database AccessPHP and Database Access

August 2020
Volume 19 - Issue 8

a php[architect] anthology

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

https://phpa.me/devlead-book
http://phpa.me/grumpy-testing-book

a php[architect] anthology

Order Your Copy
http://phpa.me/fizzbuzz-book

Tackle Any Coding
Challenge With Confidence

Companies routinely incorporate coding
challenges when screening and hiring new
developers. This book teaches the skills
and mental processes these challenges
target. You won’t just learn “how to learn,”
you’ll learn how to think like a comput-
er. These principles are the bedrock of
computing and have withstood the test of
time.

Coding challenges are problematic but
routinely used to screen candidates for
software development jobs. This book
discusses the historical roots of why they
select for a specific kind of programmer.
If your next interview includes a coding
exercise, this book can help you prepare.

Available in Print, Kindle Unlimited,
and Kindle Lending Library

https://phpa.me/fizzbuzz-book

12 \ August 2020 \ www.phparch.com

FEATURE

PHP and Database Access
Erwin Earley

In its early days, the Internet was all about sharing static data like images, flat text files, and
downloadable binaries. The early Internet’s static nature was useful in for sharing information. In
many ways, the ability to tie static web pages to the dynamic content resident in enterprise databases
allowed us to build new kinds of applications. This is where, in many respects, PHP shines.

Often referred to as the “glue” that
binds the static nature of HTML to the
dynamic nature of data, PHP has been
instrumental in tens-of-thousands of
dynamic web applications, including
all of those applications based on the
ubiquitous LAMP-stack. With that as
background, if one is going to work with
PHP, one needs to understand both the
capabilities that PHP can afford to work
with databases and the methods avail-
able for working with those databases.

This article takes a somewhat unique
approach to explore how PHP works
with databases. The first part of the
article looks at using PHP to work with
the IBM Db2 Database Management
System that is integral to the IBM i
operating system. After establishing the
foundational information, the article
delves into PHP’s ability to work with
the open-source MySQL/MariaDB
DBMS. Finally, it will examine how
PHP can be used to join data from both
DBMSs together programmatically.

PHP on IBM i has been available
since 2006, and like other platforms
that PHP runs in, it is used for both
web-based applications as well as CLI
solutions. In the web-space, we see
users use PHP as part of the LAMP-
stack (yes, MySQL/MariaDB is also
available on IBM i) for implementa-
tion of solutions based on WordPress,
Joomla, and Magento—just to name a
few. Additionally, customers use PHP
to develop custom applications that
leverage their enterprise-level Db2 data
and give it a web presence to achieve
greater visibility with their constituency
and increase the effectiveness and value
of their data. A uniqueness of PHP on
IBM i is the ability to integrate PHP
with existing programs and commands

on the system in a way that allows
users to leverage existing business logic
rather than re-writing that logic. For
example, through a capability known
as XMLService—part of the IBM i
operating system—a PHP program can
make a call into an RPG program and
then render the results on a web form.

By way of a brief introduction, Db2
on IBM i is an SQL compliant transac-
tion processing Database Management
System (DBMS) implemented below
the operating system level. This sepa-
ration is referred to as the Machine
Interface that lies between the Oper-
ating System and the hardware. The
DBMS supports features such as jour-
naling and commitment control such
that the data never becomes corrupted,
and data isn’t lost even if the event of
power outages to the underlying hard-
ware. The IBM i operating system is
implemented as a database machine
in which all objects in the operating
systems are, in fact, elements in the Db2
database. The DBMS is exceptionally
resilient as well as self-managed. It is
unusual to have Database Administra-
tors (DBAs) managing an IBM i system/
database. Built on IBM’s POWER
hardware IBM i scales vertically, and
one system can handle multiple, large,
and diverse workloads. Total Cost of
Ownership (TCO) studies tend to show
a competitive cost for IBM i with it’s
reduced operator expenses and smaller
physical footprint without a need for
horizontal scaling.

While PHP supports Object Oriented
programming as well as methods for
data abstraction, this article will use
procedural code for its examples along
with native drivers for the database
access.

IBM Db2
Before getting into the specifics of

accessing IBM Db2 from PHP, it’s essen-
tial to discuss a few features, or nuances
of the IBM i operating system. IBM i is
essentially a database-machine in that
everything in the operating system
is, in fact, a database object. As such,
connections are to the system rather
than a specific database, and libraries
are used to segment different database
items. For purposes of this article, one
could conceptualize a library as a data-
base, and as we will see, libraries can
have database tables within them.

As with anything else in PHP, the
first place to look is the online docu-
mentation for Db2 access1. The PHP
extension that provides the ability to
work with Db2 is ibm_db2. The exten-
sion offers upwards of 40 different
function calls including those for
working with database connections,
fetching data, working with field infor-
mation, working with errors, working
with key information working with
columns and procedures and working
with table information, working with
commits and rollbacks, and working
with table information. This article
will concentrate on the basics of estab-
lishing a connection and retrieving data.

The first function to look at is
connecting to the database:

$conn = db2_connect('127.0.0.1', '', '')

The db2_connect() function takes four
arguments, the system being connected
to, the username and password creden-
tials for the connection, and an optional
fourth parameter related to the library
to scope the connection to. Since PHP

1	 Db2 access: http://php.net/book.ibm-db2

phparch.com
http://php.net/book.ibm-db2

 www.phparch.com \ August 2020 \ 13

PHP and Database Access

can run natively on the platform, the connection is often to the
localhost, which can be designated as LOCAL or 127.0.0.1. The
default configuration for the db2_ibm extension is to allow
for a null username and password. In that case, the privileges
for the connection will be limited to the privileges of the user
running the PHP Apache module which is typically limited
to read-only across a limited set of libraries. The limitation
of the ‘default’ user is a security consideration. When user/
password credentials are provided on the db2_connect() call,
the privileges available via that connection are based on that
user credential. Then, database functions such as inserts and
updates are supported provided that the user has read/write
access to the data source.

As one would expect, the db2_connect() function either
returns a resource-handle for the data source, which is stored
in the $conn variable or returns FALSE. Error conditions from
the connection can be handled with the db2_conn_error()
and db2_conn_error_msg() functions, the former returning
an error number and the later returning an error string.
Connections established with db2_connect() are non-per-
sistent connections that will be torn down when it is explicitly
closed using db2_close(). If the script ends without closing
the connection, then PHP’s cleanup at script termination
will close the connection. The ibm_db2 driver also supports
persistent connections, which can be established with
db2_pconnect(). A connection established with
db2_pconnect() is persistent and remains active. When
subsequent connections are established for the same user
credentials, the connection does not have to be re-established,
reducing overhead. In the case of a persistent connection,
the connection remains active until db2_pclose() is invoked.
Like any other PHP extension, there are numerous settings
for ibm_db2 in the ibm_db2.ini file. Two to make a quick
mention of are the ability to enforce providing user creden-
tials (ibm_db2_blank_userid) on the connect and treating all
connections as persistent connections (i5_all_pconnect). As
one might expect, a 0 disables those settings while a 1 enables
them.

There are a couple of different ways to retrieve data from
IBM Db2 via PHP, and the method to use depends on whether
data elements are part of the query. The two functions are
db2_exec() which executes an SQL statement directly against
the data source and db2_execute() which executes what is
referred to as a “prepared” SQL statement to avoid SQL injec-
tion attacks. For simplicity, this article will deal exclusively
with the db2_exec() function; however, a sidebar to this
article will cover the importance of avoiding SQL injection
attacks with db_execute() and its related functions. Consider
the following two lines of code:

$sql = "select * from sales.sp_cust";
$stmt = db2_exec($conn, $sql);

The first line establishes a variable with the SQL statement
to be executed. Note that the table that the data is being
selected from is provided as sales.sp_cust—the sales portion

represents the library containing the table. Additional ways
to specify the library would have been to provide a single-li-
brary or list of libraries as an argument to the connection or
to rely on the library-list associated with the user making
the connection. From a logical perspective a library-list can
be thought of as an execution search path for data sources.
db2_exec() attempts to execute the SQL statement ($sql) against
the connection resource ($conn) returned from the earlier call
to db2_connect(). Successful execution of the SQL statement
will result in a statement resource being returned otherwise
if the call fails then FALSE is returned. db2_stmt_error() and
db2_stmt_errormsg() can be used to work with the error
number and error message respectively for a failed
db2_connect() or db2_pconnect() call.

Several functions are provided for working with data
retrieved from the db2_exec() call and the one to use depends
on how the data is to be processed. Consider the following
code segment:

while ($row=db2_fetch_array($stmt)) {
 list($number, $firstname, $lastname) = $row;
 echo "$number, $firstName, $lastName" . "\<br\>";
}

The previous code uses a while loop to process through
the set of records returned from the SQL SELECT statement
one row at a time. db2_fetch_array() returns an enumerated
indexed array. For code readability, list() is used to take
the field values and place them in scalar variables so we can
use those same scalar variables in the echo statement. There
are other functions provided by the ibm_db2 extension for
working with a row in a result set:

Function Description

db_fetch_array()
Returns an array, indexed by column
position. Column indexing starts at 0

db2_fetch_assoc() Returns an array, indexed by column name.

db2_fetch_both()

Returns an array, indexed by column
name and position. Keep in mind that
the row returned by db2_fetch_both()
will require more memory then the
single-indexed arrays returned by db2_
fetch_assoc() and db2_fetch_array()

db2_fetch_object()
Returns an object in which each proper-
ty represents a column returned in the
row fetched from a result set.

In addition to the usability differences of each retrieval
function there are also performance differences that should
be considered with db2_fetch_array() being the most
performant while db2_fetch_assoc() and db2_fetch_both()
add overhead due to the need to retrieve the field names
from the data-source. Speaking of field-names, there are
a number of functions provided for working with field
information including db2_field_name(), db2_field_num(),

phparch.com

14 \ August 2020 \ www.phparch.com

PHP and Database Access

db2_field_precision(), db2_field_scale(), db2_field_type(),
db2_field_width(), and db2_field_display_size().

There are other functions for working with results from an
SQL statement db2_result() returns a single column from
a row in the result set, and db2_fetch_row() sets the pointer
to the next row or the requested row depending on how the
function is called. These are considered second-tier functions,
and as such, they are seldom used in favor of the functions
mentioned earlier for working with results.

It should be noted that db2_stmt_error() and
db2_stmt_errormsg() can be used to work with errors returned
from the data retrieval functions.

Keep in mind that while the example shows an SQL SELECT
statement, we can execute virtually any SQL statement,
including INSERT, UPDATE, and DELETE statements. Together
with the SELECT statement form, these are the basis for the
essential database activities of any data-driven application,
namely CRUD (Create, Read, Update, Delete).

PHP
The next section of the article will look at MySQL/MariaDB

access from PHP. For simplicity, the remainder of the article
will refer to MySQL; however, one should keep in mind that
MariaDB is a drop-in replacement for MySQL. Everything
that follows can be used for MariaDB environments as well.
The PHP extension that provides support for MySQL is
mysqli2. It is the MySQL Improved extension that has been
available since PHP 5 and is designed to work with version
4.1.3 and later of MySQL and the equivalent version of
MariaDB. The mysqli extension has support for procedural
and object-oriented coding practices—like the previous
discussion of IBM Db2. This article limits itself to the proce-
dural code for working with MySQL.

Connections to the database server are made with the
mysqli_connect() function, which takes as it’s arguments
the hostname where MySQL DBMS is installed and the
username and password credentials for the user on the
MySQL DBMS. An optional fourth parameter allows for
specifying the database to connect to. Unlike the ibm_db2
driver that has a separate function for establishing persistent
connections, persistent connections to MySQL are estab-
lished by prepending a p: to the hostname parameter of the
mysqli_connect() call.

Unlike ibm_db2 which provided separate functions
for working with errors on database connections vs. SQL
processing, MySQL has a single set of functions, specifically
mysqli_errorno() and mysqli_error() which returns the error
number and error text respectively for working with both
connection and SQL processing errors.

mysqli_select_db() is used to choose or change the default
database to execute database queries against. Recall that the
mysqli_select_db() function has an optional parameter for

2	 mysqli: https://php.net/book.mysqli

establishing the default database on connection. It is typical
to do so and only use mysqli_select_db() for those times
when the default database needs to be changed within the
PHP script. The following code provides a connection and
database selection example:

$con2 = mysqli_connect("host", "user", "password");
mysqli_select_db($con2, "dbname");

The return from mysqli_select_db() is either TRUE or FALSE.
Normally the call would be in an if statement to test for
success or failure of the call and react to errors accordingly

Execution of SQL against the MySQL data source is
handled by the mysqli_query() function. Like the db2_exec()
function, mysqli_query() executes an SQL statement directly
on the DBMS and is subject to SQL injection attacks. One
could (and should) use mysqli_stmt_prepare() along with
mysqli_stmt_bind_param() and mysqli_stmt_execute() to
avoid SQL injection attacks.

Like the ibm_db2 extension, the mysqli extension provides
several functions for working with the set of records returned
from a query including mysqli_fetch_row() which returns the
row as an enumerated array and mysqli_fetch_assoc() which
returns the row as an associative array where the keys are the
field names. Another function provided for working with the
records is mysqli_fetch_array(), which returns the row as
either an associative or enumerated array or both based on
the result-type requested in the call. After working with the
result set, it should be closed with mysqli_free_result().

Connections to MySQL are closed with mysqli_close().
It should be noted that non-persistent MySQL connections
and result sets are automatically closed when the PHP script
finishes, whereas persistent connections remain open until
explicitly closed. That said, it is considered a best practice to
close persistent as well as non-persistent connections explic-
itly.

The following table provides a mapping of ibm_db2
provided functions to their mysqli counterparts:

Description ibm_db2 mysqli

Establish
connection db2_connect()

mysqli_connect()

mysqli_select_db()

Work with
connection
errors

db2_conn_error()

db2_conn_error_msg()

msyqli_errorno()

mysqli_error()

Close
connection db2_close() mysqli_close()

Establish
persistent
connection

db2_pconnect()
mysqli_connect(
p:host…)

Close
persistent
connection

db2_pclose() mysqli_close()

phparch.com
https://php.net/book.mysqli

 www.phparch.com \ August 2020 \ 15

PHP and Database Access

Description ibm_db2 mysqli

Execute an
SQL state-
ment

db2_exec()

db2_execute()

mysqli_query()

mysqli_stmt_execute()

Work with
SQL errors

db2_stmt_error()

db2_stmt_errormsg()

mysqli_errorno()

mysqli_error()

Retrieve
data

db2_fetch_array()

db2_fetch_assoc()

db2_fetch_both()

mysqli_fetch_row()

mysqli_fetch_array()

mysqli_fetch_assoc()

SQL injec-
tion related

db2_prepare()

db2_bind_param()

db2_execute()

mysqli_stmt_prepare()

mysqli_stmt_bind_param()

mysqli_stmt_execute()

Bringing The DBMSs Together
Let’s see how these two disparate data sources can be joined

together via PHP now that we’ve established a baseline of
knowledge for working with IBM Db2 data and MySQL data.
Items to keep in mind is that the return from a successful
connection to a DBMS from PHP is a resource, and that
resource is used by PHP functions to work with the DBMS.
Multiple DBMS connections (i.e., multiple resources) can be
active within a PHP application. Any type of “union” func-
tion (such as joining across tables) that spans various DBMS
(resource) is done via program logic. Consider the code
segment in Listing 1

The first two code lines establish connections to the IBM
Db2 data source and the MySQL data source. Notice that we
store the resource returned from the respective connect calls
in separate variables. Additionally, note that we select the
database on the connect call for the MySQL connection, so a
subsequent mysqli_select_db() call isn’t needed.

The next two code lines (following the “Select records from
Db2” comment) establish and execute the SQL statement that
retrieves records from IBM Db2—one could think of this as
an outer table join, as shown in a minute.

The first while statement establishes a while loop that will
process through the records returned from the SELECT
against Db2. The processing within the while loop is where
things get interesting. The $name = assignment takes the first
element from the array representing the current record from
the IBM Db2 data retrieval and stores it in a scalar that will be
used for a subsequent select from MySQL.

After storing the name value, the next two lines of code
establishes and executes the SQL statement that retrieves
records from the MySQL data source using the field value
saved from the Db2 record, which can be thought of as a
foreign-key. The result of this SELECT, which can be consid-
ered an inner join, is to retrieve MySQL records that have a
relationship with the current records from Db2. Once the
record is retrieved, we use a do-while loop to iterate through
the MySQL result set and output the retrieved records.

Keep in mind that while the example doesn’t include error
checking, good coding practices would have included error
checks at each appropriate point within the code (such as
each connection attempt, SQL query execution, and data
retrieval functions).

One final item worth noting is that for both IBM i Db2
and MySQL, there are PHP extensions that support PHP
Data Objects (PDO), which provides a uniform method of
access to multiple databases. The extension that provides
PDO for IBM i Db2 is pdo_ibm, while the extension for
MySQL is pdo_mysql. Since PDO abstracts data access away
from the databases themselves, the functions (or in the case
of object-oriented PDO, the methods) become consistent,
with only the database connection being unique between the
DBMSs.

So as an example, rather than having to use different
functions for execution of the query (db2_exec() and
myqli_query() in the example) and different func-
tions for accessing the results (db2_fetch_array() and
mysqli_fetch_row() in the example) the calls become consis-
tent across DBMSs used—query() and fetch() methods,
respectively. Note, however, that the SQL for each DBMS
might differ, taking advantage of each vendor’s proprietary
extensions to SQL and subject to its restrictions. You don’t
use MySQL’s backticks to quote identifiers when working
with DB2, regardless of whether you use PDO.

Listing 1.

 1. <?php
 2.

 3. // Establish database connections
 4. $con1 = db2_connect('localhost', '', '');
 5. $con2 = mysqli_connect(
 6. 'localhost', 'dbuser', 'password', 'testdb'
 7.);
 8.

 9. // Select records from Db2
10. $sql = "select * from sp_cust";
11. $result = db2_exec($con1, $sql);
12.

13. // Process 1st result set
14. while ($row1 = db2_fetch_array($result)) {
15. $name = $row1[0];
16. // select from second database
17. $sql2 = "select * from crm where custname = $name";
18. $result2 = mysqli_query($con2, $sql2);
19. // process through return set
20. $row2 = mysqli_fetch_row($result2);
21. do {
22. echo "<tr><td>{$row2[0]}</td>";
23. echo "<td>{$row2[1]}</td>";
24. echo "<td>{$row2[2]}</td>";
25. $row2 = mysqli_fetch_row($result2);
26. } while ($row2);
27. }

phparch.com

16 \ August 2020 \ www.phparch.com

PHP and Database Access

Avoiding SQL Injection
When developing data-centric applications, it is essential to

keep security at the forefront of both the application’s design
and implementation. One way to ensure data security is
through the filter extension provided for PHP, which includes
many filter types, including “validate” and “sanitize.” Check
out https://php.net/book.filter for more information on the
filter extension.

This sidebar looks at SQL injection attacks and how to
avoid them in PHP. SQL injection is exactly what the name
implies. It’s injecting data/statements into an SQL statement.
Consider the following SQL INSERT statement:

select * from dbtable where customer = $name;

Let’s further assume that the value for $name comes from
a web-form (probably a safe assumption since this is likely a
PHP application. Without proper hygiene of the web-form
or validation of the data, a user could input the following for
name:

John;truncate sales;

This input results in the following SQL statements (yes
statements):

select * from dbtable where customer = John; truncate sales;

When executing this string, besides performing the select
statement, the records from the sales table are deleted. It’s
highly unlikely that that is the intended result. So how can
this be prevented from occurring? One way is with prepared
statements. With a prepared statement, instead of sending a
raw query (as shown earlier) to the database engine, the data-
base engine is first told the structure of the query that will be
submitted.

One way to avoid SQL injection is through the validation of
input, as briefly discussed above. Another way to avoid SQL
injection is to use a prepared query that uses placeholders for
the parameters of the query statement and then binds values
to those parameters. Consider this example which uses an
SQL INSERT statement:

INSERT into dbtable (name) VALUES ($name);

At this point, it is still possible to have malicious statements
injected via the data represented by the $name variable being
passed to the database. Using a placeholder changes the state-
ment to the following:

INSERT into dbtable (name) VALUES (?);

Now, injection isn’t possible since no value (variable or
literal) is sent to the database engine. The parameterized
statement (sometimes referred to as a template) is sent to the
database engine with the db2_prepare() function.

Getting the values themselves to the database is done with
the db2_bind_param() function, and finally, we execute the
statement with the db2_execute() function. The example in
Listing 2 shows this in practice.

Since the bound variables are sent to the database engine
separate from the query, they cannot be interfered with. The
database engine uses the values directly at the point of execu-
tion after the statement itself has been parsed. The above code
should be expanded to included error checking along the way
at each database function execution.

While the examples in this side-bar used IBM Db2 as the
data source, the same method for avoiding SQL injection
can be implemented for MySQL data sources through use of
the mysqli_stmt_prepare(), mysqli_stmt_bind_param(), and
myqli_stmt_execute() functions.

You should also avoid using user-supplied input for field
names, database tables, and sorting or grouping parameters.
If you do, make sure you escape them appropriately as these
can not be parameterized.

Conclusion
This article set out to explore basic database functions

provided by PHP for both IBM Db2 and MySQL and show
how data from those disparate DBMSs could be program-
matically joined together to provide additional functionality
and insight from the logical relationships between the data
sources.

 Erwin offers more than 20 years of
experience working in the IBM i community,
as an IBM employee and now with Zend by
Perforce. He has worked with many tech-
nologies on the POWER platform including
cloud (PowerVC), Dev/Ops solutions
(Docker and Chef), and open source technol-
ogies (Linux, MySQL/MariaDB, and PHP).

Listing 2.

 1. <?php
 2.

 3. $con = db2_connect('localhost', 'dbuser', 'userpass');
 4. $sql = "INSERT into dbtable (name) values(?)";
 5. $stmt = db2_prepare($con, $sql);
 6. db2_bind_param($stmt, 's', $name);
 7. db2_stmt_execute($stmt);
 8. db2_close($con);

Related Reading

•	 Education Station: An Introduction to Doctrine
by Matthew Setter, September 2017.
https://phparch.com/magazine/2017-2/september/

•	 PHP Prepared Statements and MySQL Table Design
by Edward Barnard, May 2017.
https://phparch.com/magazine/2017-2/may/

•	 Practical Database Design
by David Berube, March 2015.
https://phparch.com/magazine/2015-2/march

a php[architect] guide

Discover how to secure your
applications against many of the
vulnerabilities exploited by attackers.

Security is an ongoing process not something to add
right before your app launches. In this book, you’ll
learn how to write secure PHP applications from first
principles. Why wait until your site is attacked or your
data is breached? Prevent your exposure by being aware
of the ways a malicious user might hijack your web site or
API.

Security Principles for PHP Applications is a comprehensive guide.
This book contains examples of vulnerable code side-by-side with
solutions to harden it. Organized around the 2017 OWASP Top Ten
list, topics cover include:

• Injection Attacks
• Authentication and Session Management
• Sensitive Data Exposure
• Access Control and Password Handling
• PHP Security Settings
• Cross-Site Scripting
• Logging and Monitoring
• API Protection
• Cross-Site Request Forgery
• ...and more.

Written by PHP professional Eric Mann, this book builds on his
experience in building secure, web applications with PHP.

Order Your Copy
http://phpa.me/security-principles

phparch.com
https://php.net/book.filter
https://phparch.com/magazine/2017-2/september/
https://phparch.com/magazine/2017-2/may/
https://twitter.com/mbniebergall

a php[architect] guide

Discover how to secure your
applications against many of the
vulnerabilities exploited by attackers.

Security is an ongoing process not something to add
right before your app launches. In this book, you’ll
learn how to write secure PHP applications from first
principles. Why wait until your site is attacked or your
data is breached? Prevent your exposure by being aware
of the ways a malicious user might hijack your web site or
API.

Security Principles for PHP Applications is a comprehensive guide.
This book contains examples of vulnerable code side-by-side with
solutions to harden it. Organized around the 2017 OWASP Top Ten
list, topics cover include:

• Injection Attacks
• Authentication and Session Management
• Sensitive Data Exposure
• Access Control and Password Handling
• PHP Security Settings
• Cross-Site Scripting
• Logging and Monitoring
• API Protection
• Cross-Site Request Forgery
• ...and more.

Written by PHP professional Eric Mann, this book builds on his
experience in building secure, web applications with PHP.

Order Your Copy
http://phpa.me/security-principles

http://phpa.me/mag_subscribe

	PHP and Database Access
	Erwin Earley

