
WordPress Development in Depth III

Foreword� VII

1. Planning a Website� 1
Overview	 � 2
Why WordPress?	 � 3
Technical Concerns	 � 3
Operational Considerations	 � 6

2. Development Environment Requirements� 11
HTML and CSS	 � 11
Overview	 � 12
Server Platforms Environments	 � 14
WordPress Install	 � 15

3. CSS Crash Course� 21
HTML	 � 22
Style Sheets	 � 25
Responsive CSS	 � 36
Conclusion	 � 56

4. The Gutenberg Editor� 57
The Block Editor	 � 58
Gutenberg’s Origin	 � 65
Building A Block	 � 67
Reusing A Block	 � 72
When To Use Gutenberg	 � 74

Table of Contents

Sam
ple

WordPress Development in DepthIV

Table of Contents

5. Plugin Development� 75
Preparation, Rules, Best Practices	 � 76
Example Plugin	 � 80
Basic Files And Folder Layouts	 � 81
Collecting And Saving Data	 � 85
Listing Collected Data	 � 90
Admin Menu Creation	 � 95
Admin Page Development	 � 98
Form Management	 � 98
Creating A Widget	 � 104
Creating A Dashboard Widget	 � 113
Troubleshooting And Debug Tools	 � 114
Installation And Update Processes	 � 115
Distributing Your Plugins	 � 119
Summary	 � 121

6. Child Themes� 123
Why Build A Child Theme?	 � 124
Customizing The Twenty Nineteen Theme	 � 125
Customizing Themes With The Child Themes Strategy	 � 128
Template Hierarchy	 � 128
Quick Reference	 � 134

7. Internationalization� 137
Translation Functions	 � 138
Preparing Your Code	 � 140
Translating A Settings Page	 � 141
The Loco Translate Plugin	 � 143
Viewing The Results	 � 146Sam

ple

﻿

WordPress Development in Depth V

8. The Best Plugins—Part One (Simple Tasks)� 147
How To Install And Activate A Plugin	 � 149
Akismet	 � 151
Available Updates	 � 151
Testimonial Rotator	 � 152
Custom Sidebars	 � 154
Store Locator Plus	 � 154
Duplicate Post	 � 156
Minimal Coming Soon & Maintenance Mode	 � 156
Add From Server	 � 157
Pop-up Maker	 � 158
Simple Links	 � 159
WP Super Cache And Autoptimize	 � 160
Smush	 � 162
WP Content Copy Protection & No Right Click	 � 163
GDPR Cookie Consent	 � 164
WP Rollback	 � 165
Custom Login	 � 166
Disable Gutenberg	 � 167
Wicked Folders	 � 167
Force Login	 � 168

9. The Best Plugins—Part Two (Advanced Tasks)� 171
Wordfence Security	 � 172
Google Analytics Dashboard For WP	 � 174
WP Forms	 � 175
Revolution Slider ($)	 � 178
WooCommerce	 � 179Sam

ple

WordPress Development in DepthVI

﻿

Yoast SEO	 � 183
Ultimate Member	 � 186
All-in-One WP Migration	 � 187
HyperDB	 � 188
Adminimize	 � 189
Custom Post Types	 � 190
Posts 2 Posts	 � 192
RCCP-Free	 � 196

10. Other Resources� 199
Themes	 � 200
Web Resources	 � 200
Troubleshooting Assistance	 � 202
Finding a Great Host	 � 203
The Community	 � 204

Index � 205

Sam
ple

WordPress Development in Depth 75

Plugin Development
Having written a few plugins, I have learned a lot about writing them

well and in a secure way. So some of what I have learned over the last
few years will be imparted to you here. I’m still learning and gaining new
insights into what a useful plugin should look like and how it should
respect its environments on both the admin and public sides.

Chapter

5

Sam
ple

WordPress Development in Depth76

5. Plugin Development

Let’s start with a few of the ground rules and then look at the coding aspects of this
process. Keep in mind there are two major development bases. The first, WordPress, has
a lot of its built-in functions that you should consider first. The second is PHP itself, the
programming language on which WordPress is based. The PHP ecosystem can provide
generalized solutions you can adapt for use on your site. These are usually integrations with
other services, APIs, and frameworks.

This chapter is our first more profound look into programming—more so than the rest of
the book. If you have no interest in writing code, perhaps this chapter will whet your appe-
tite. It’s often a desire to improve a product in which you see flaws. It may follow that as you
see flawed plugins, you can fix the code yourself, or create a new plugin from scratch which
solves the same issue but more logically and efficiently.

Preparation, Rules, Best Practices
Next, we want to look at practices we should follow when building a plugin to ensure that

it is maintainable, secure, and doesn’t break your site. In list format, they are as follows.
1.	 Don’t Mess with the WordPress Core.
2.	 Keep your code separate from other plugins you may be developing, even if they are

complementary.
3.	 Use the WordPress API functions whenever possible; they save time and are native.
4.	 Prefix your code and tables with unique identifiers to avoid naming collisions.
5.	 Use object-oriented programming (OOP) whenever possible.
6.	 Follow secure coding guidelines.
7.	 Don’t use sessions if possible.
8.	 Use WordPress functions instead of PHP functions.
9.	 Always use the WordPress Database API when interacting with the database.

Rule One: Don’t Mess With The WordPress Core!
Emblazon this rule on your forehead and heart! The core of WordPress is the founda-

tion of the whole website structure well beyond your plugin. If you ever make a change to
the core files, you endanger your plugin work and your website’s very foundation. Not only
do you jeopardize your site, but on the off chance that your core code alterations work out,
the risk of instability returns when a new version of WordPress is released. When fixes or
enhancements are added to the core codebase of WordPress, you will be out of step with it
and, in fact, may even conflict with it. Updates will be a pain if they can be done at all, and Sam

ple

Preparation, Rules, Best Practices

WordPress Development in Depth 77

your plugin may have to be adjusted with much work to get it realigned. So, don’t mess
with the WordPress core!

[1]	 dependant plugin exists: https://phpa.me/devinvinson-468
[2]	 list of APIs here: https://codex.wordpress.org/WordPress_APIs

Rule Two: Keep Your Code Separate
Keep your plugin code separate from other plugins and keep theme customizations in

a distinct child theme. This habit helps with potential conflicts and keeps your code from
being dependent on code that may not be defined or installed by a user. It allows each
plugin to be 100% independent and helps ensure it can stand and execute independently.
Even if you are creating a plugin that augments another one, you should still keep the source
code of each one separate as there is no guarantee an end-user will install the same code
you may be depending on. Additionally, if you are creating a plugin dependant on another
plugin (e.g., one that extends WooCommerce), be sure to check this out as a way to test
a dependant plugin exists[1]. Where your code does depend on another plugin or library,
document that dependency.

Rule Three: Use WordPress API Functions
Using the functions already provided by WordPress saves time and effort because you are

using tried and tested solutions. You are not reinventing the wheel with code that needs to
be reviewed and vetted. It saves you time and mental processing cycles by letting you focus
on solving the problem at hand. See the list of APIs here[2].

Here are a few of the more common APIs you may like to use in your plugins:
Dashboard Widgets API—if your plugin adds content (notice information) to the admin

dashboard Database API—if you are directly interfacing with the database REST API—lets
you make some or all WordPress data (posts, pages, etc.) available to external platforms
Options API—if you want your plugin options controlled alongside other admin options
Shortcode API—if you plan to make shortcodes a part of your plugin Widgets API—allows
your plugin to make configurable widgets available to the theme.

Rule Four: Prefix Your Code
Prefixing your function and class names helps encapsulate your code from other plugins

that may also be installed on the same WordPress site. Many plugins interact with the
database. If you had a function called save_to_db() and another plugin defines the same
function, there is ambiguity. One or both plugins can fail—bringing the entire site to a
stand-still.Sam

ple

https://phpa.me/devinvinson-468
https://codex.wordpress.org/WordPress_APIs

WordPress Development in Depth78

5. Plugin Development

This is an issue within the underlying language of PHP; when it encounters a call to a
function with an already used name, it comes to a complete halt and emits a fatal error. For
example, if your plugin was named “Plugin Services Manager,” prefix your save to database
function with psm_. Your function’s full name would then be: psm_save_to_db().

This advice goes back to rule two. You could copy well-tested code from a previously
developed plugin and therefore be in self-conflict. Although it may not seem efficient to
have potentially duplicated code, it is best, in the long run, to be as separated and ensconced
as possible with your plugin code. If you find that you use the same functions across plugins,
consider making a “base” plugin that your other plugins depend on.

Additionally, you can use PHP’s native syntax for namespaces and object-oriented
programming to prevent name collisions. Using namespaces prevents naming clashes in
large applications by segmenting class and function names. You can read up on namespaces
in PHP[3] in the online documentation.

[3]	 namespaces in PHP: https://php.net/language.namespaces.rationale
[4]	 Simplifying WordPress’s functions.php with OOP: https://phpa.me/wsmith-wp-oop
[5]	 Introduction to Object-Oriented PHP for WordPress Developers: https://phpa.me/wpshout-oop-course

Rule Five: Use OOP Whenever Possible
This advice is a general practice for anything related to PHP code. Object-oriented

programming is a better approach to writing and organizing code. It makes your code more
reusable and adaptable. It also helps with the separation of coding concerns, as already
pointed out above. OOP allows for the encapsulation of code into blueprints called classes,
which define how objects of a particular class behave. These blueprints house both proper-
ties (variables) and methods (functions) specific to that object. Once instantiated, the object
is treated as one item with defined behaviors. For further reading on OOP check out these
resources:

•	 Simplifying WordPress’s functions.php with OOP[4]

•	 Introduction to Object-Oriented PHP for WordPress Developers[5]

Rule Six: Follow Secure Coding Practices
Even in this modern age of software development, we need to reiterate the importance of

secure code. Keeping your site safe from malicious actors is an ongoing process, but it can
save you time and effort by minimizing the risk that your site is taken over, defaced, or used
to steal user data. Here are some general guidelines for writing secure code.

1.	 Secure and filter input. You should never trust any information coming from an
outside/unknown source, especially if your plugin allows for things like public Sam

ple

https://php.net/language.namespaces.rationale
https://phpa.me/wsmith-wp-oop
https://phpa.me/wpshout-oop-course

Preparation, Rules, Best Practices

WordPress Development in Depth 79

comments. If you’re expecting a state abbreviation, US phone number, or zip code,
validate that the input looks like what you expected.

2.	 Escape all output. Never display user-submitted data without escaping it first. Doing
so prevents cross-site scripting (XSS) attacks where someone tries to add HTML or
Javascript code to your page. (Cross-Site Scripting) site attacks.

3.	 Confirm only authorized users have expected access levels granted to your plugin.
Always ensure your site contributors have roles with appropriate levels of access. You
should never be in danger of being “hacked” by an authorized user with unnecessary
access. There’s no need to be hacked by someone who has authorized access to your
site. Be sure to give your site contributors appropriate access roles to complete their
tasks and no more.

4.	 Protect database insertions with prepared statements and filtered data. Clean data
going into your database is always preferred and prevents frequent attacks. Use
prepared statements to avoid SQL injection attacks.

WordPress has several functions that can help secure your code and data; be sure to
employ them when and where needed. Look here for details on this security topic[6].

[6]	 security topic: https://phpa.me/wpdev-plugins-security
[7]	 wp_strip_all_tags(): https://phpa.me/wpdev-wp-strip-all-tags

Rule Seven: Minimize Using Sessions If Possible
Sessions should only be used where really needed. WordPress.org recommends that if

you must use a session, you at least encapsulate it within a function. Using sessions can
conflict with server-based caching features that are often set up on commercial hosting
platforms. Using PHP functions like session_start(), ob_start(), and ob_end_flush() can
conflict with products like Varnish and NGINX that cache content on a site-wide basis. This
can cause the host to not work as expected and may get your plugin banned from the host as
a result. It may be a non-issue issue if you are running your hosting platform, but the nature
of plugin creation is to allow the masses to use them, so it is better not to use code caching
methods.

Rule Eight: Use WordPress Functions Instead Of PHP Functions
Rule eight is a similar point to the one above about APIs. WordPress has many functions

that mimic or improve upon native PHP functions. There are often specific situations within
WordPress that the native PHP function does not account for. The WordPress replacement
function takes these kinds of issues into account. Therefore, your code benefits from these
improvements if you use the WordPress equivalent. One example of this is the augmenta-
tion of PHP’s strip_tags() function into WordPress’ wp_strip_all_tags()[7] function. Read
the latter’s documentation for an example.Sam

ple

https://phpa.me/wpdev-plugins-security
https://phpa.me/wpdev-wp-strip-all-tags

WordPress Development in Depth80

5. Plugin Development

Rule Nine: Always Use The WordPress Database API

[8]	 here: https://phpa.me/wpdev-wpdb
[9]	 guidelines: https://phpa.me/wpdev-plugin-practices

WordPress has its database class accessed through $wpdb; use it and its methods at all
times. Also, use prepared statements when building your SQL commands to avoid making
your code vulnerable to SQL injections. See the $wpdb class documentation here[8] for usage
details.

Further Guidelines
That covers the best practices of plugin creation, in general, and at a high level. Be sure to

review all of the guidelines[9] for plugin development.

NOTE: Your development platform should be separate from any live WordPress
installations while building your plugins. Some major development projects even have
another platform, often called a staging site to perform testing.

Example Plugin
Let’s carry on with building an example plugin over the course of this chapter following

the best practice guidelines as we progress. First, let’s discuss what this plugin will do. It
will be basic in its functionality and features. We also want to show how to interact with
the front and backend of WordPress—the public and admin areas, respectively. We review
processes like connecting to the database, plugin installation, activation, and removal of
the plugin. With these basic concepts and integration points, you can get started and create
useful plugins for the WordPress world.

Our plugin allows a website visitor to provide their name and email address on a
sidebar-based form. Upon opt-in confirmation, we store any collected email addresses in
the database in our own table. We can use the contact information to announce when we
publish new blog posts on the website. The admin pages allow for turning on or off this new
post announcement process and manual data entry. The plugin can also list all the collected
data and delete selected emails from the admin area. The email owner can unsubscribe at
any time via a link embedded in the emails that they receive via the plugin. We’re keeping
this a simple example plugin, as previously mentioned. Therefore, we are not creating any
shortcode compatibility or adding extra feature add-ons like editing content on the admin
side. This code will be free to use and to extend.Sam

ple

https://phpa.me/wpdev-wpdb
https://phpa.me/wpdev-plugin-practices

Basic Files And Folder Layouts

WordPress Development in Depth 81

Basic Files And Folder Layouts

[10]	 readme.txt file: https://phpa.me/wp-readme-works

Let’s get started with the basic folder
structure of a typical WordPress plugin; see
Figure 5.1 as a structural example.

The code should be in its own folder
under the wp-content/plugins folder (3).
If your plugin name is multi-worded, use
hyphens between the words and keep the
folder name all lowercase to avoid any
potential operating system issues. Our
plugin will be called architect-subscribers.
You should try to name the plugin as
descriptively as possible to give users an
idea of who created the plugin and what
it is meant to do. The primary plugin file
name should be the same as the folder
name but with a .php extension (architect-
subscribers.php). Regardless of whether
you plan to make your plugin commercially
available, it’s always a good idea to have a
readme.txt file accompanying the plugin
to explain what it is, any dependencies
required, and configuration notes in more
detail. Read here for some guidelines on the
content of the readme.txt file[10].

Plugin folder structure is flexible but should include the following folders at the very
least.

•	 assets—screenshots of your plugin
•	 css—where your CSS (cascading style sheets) are stored
•	 images—where your plugin images and icons are stored
•	 includes—where your plugin code files go
•	 js—where any JavaScript or jQuery code is stored

Figure 5.1.

Sam
ple

https://phpa.me/wp-readme-works

WordPress Development in Depth82

5. Plugin Development

Next, we build the code for the main PHP plugin file. This file sets up most of the plugin’s
environment and establishes the main menu on the admin side. However, before we build
the menu structure, we need to register the plugin within the WordPress ecosystem. To do
this, we include the plugin metadata at the beginning of the main file, which names the
plugin, gives the contact references, and establishes the license under which the plugin code
is released to the public. Listing 5.1 shows the commented code block, which determines all
of this information.

Listing 5.1.

 1. <?php
 2. /*
 3. Plugin Name: Architect Subscribers
 4. Plugin URI: https://paladin-bs.com/plugins/
 5. Description: Plugin sample for teaching plugin Development.
 6. Author: Peter MacIntyre
 7. Version: 1.2
 8. Author URI: https://paladin-bs.com/peter-macintyre/
 9. Details URI: https://paladin-bs.com
10. License: GPL2
11. License URI: https://www.gnu.org/licenses/gpl-2.0.html
12.

13. Architect Subscribers is free software: you can redistribute it and/or modify
14. it under the terms of the GNU General Public License as published by
15. the Free Software Foundation, either version 2 of the License, or
16. any later version.
17.

18. Architect Subscribers is distributed in the hope that it will be useful,
19. but WITHOUT ANY WARRANTY; without even the implied warranty of
20. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21. GNU General Public License for more details.
22.

23. See License URI for full details.
24. */

Here we give the plugin its name, its description, its version number and author, its
URI for where it can be found, and its license. Generally, the license is the GPL2 license;
we also provide the URI for where this license can be further explored. Having this block
of comments at the beginning of the file registers the plugin on the list of installed (active
or inactive) plugins within the WordPress admin area. If you fail to format these settings
properly, you risk not having the plugin display on this list. Formatting accuracy is essential.
Figure 5.2 shows the results of proper formatting by listing the plugin on the plugins page.Sam

ple

The Community

WordPress Development in Depth 205

Index
A
access, 5–6, 8, 15, 17, 79, 90, 95, 130, 149,
168–70, 173, 175–76, 186, 189–90, 196
 administration, 8
 administrator-level, 98
 appropriate levels of, 79, 98
 authorized, 79
 blocking, 169
 limiting, 186
accessibility, 34, 62, 74
 technical, 74
 visual, 60
Add from Server, 157
Adminize, 190
Akismet, 16, 148, 151
 plugin, 9, 165
All-in-One WP Migration, 20, 150, 187
Amazon S3, 187
Apache Web Server, 12, 14
APIs, 76–77, 79
 common, 77
 plugin Widgets, 77
 telephony, 196
Autoptimize, 160–62
Available Updates, 151

B
backups, 20, 187–88
 complete, 166
 multiple, 188
 restorable, 188
block
 context, 59–60
 creation, 67
 image, 61–63
 meta, 67
 multiple, 73
 new, 61, 73
 paragraph, 58, 60–61
 reCAPTCHA, 112
 regular, 74
 reusable, 59, 72–74
 script, 68–69
block.js, 68–69

C
cache, 13, 29, 161, 202
 bust, 29
 page output, 160
Cascading Style Sheets. See CSS
CDN (Content Delivery Network), 161
community, 24, 65, 67, 200–201, 204
conferences, 25, 201–2Sam
ple

WordPress Development in Depth206

10. Index

container, 12, 39–43, 45–56
 flex, 45–46, 48–49, 51
 grid, 51
Content Editor, 65, 67, 154, 192
CPT plugin. See Custom Post Types
cross-site scripting, 79
CSS
 advanced selectors, 34–35
 code, 32, 84, 104
 flex, 45–52, 54–55
 flexbox, 39, 43–45, 48, 56
 inline, 31
 parent theme’s, 126
 responsive, 36–37, 39, 41, 43, 45, 47, 49, 51,
53, 55
 rules, 25, 29, 32, 34, 36
Custom Post Types, 131, 167, 186, 190–91,
193

D
database, 16–17, 20, 76–77, 79–80, 85, 99,
108, 118, 189
 backup, 187
 named, 17
 servers, 12–13, 188
devices, 3, 25, 36, 179, 205
 mobile, 3, 159, 161, 179

E
editor, 58, 61, 65, 67–69, 167, 192
 block, 58–59, 61, 63, 66, 74
 Classic, 60, 66, 74, 131, 192
 Gutenberg, 57–58, 60, 62, 64, 66, 68, 70–72, 74
environment, 13–16, 67, 75
 development, 13–15, 17, 74
 local, 15
 production, 13, 172
 staging, 15

F
file
 backup, 187–88
 cached, 29, 161
 core, 76
 functions, 126
 language, 140, 144
 translation, 140, 143–45
 uninstall.php, 118–19
Force Login, 168–69
FTP, 17, 19, 149, 157
 credentials, 150
 secure, 16

G
GDPR, 8, 118, 164
 compliance, 164
General Data Protection Regulation. See
GDPR
Git, 19, 29
GNU General Public License, 82, 120, 125
Google Analytics Dashboard, 7, 174Sam
ple

The Community

WordPress Development in Depth 207

Google Maps, 154
Google ReCAPTCHA, 102, 109, 176
 Site Key, 101–2
Grid Layout, 39–40, 43–44
 example, 41–43
Gutenberg, 57–59, 65–67, 72, 74, 131, 167, 192
 Disable, 167

I
Internationalization, 137–38, 140, 142, 144, 146

J
JavaScript, 22–23, 67–69, 81, 84, 161, 202
 modern, 26

M
MAMP, 14
MariaDB, 12
Matomo, 7
menu, 6, 36, 72, 95–98, 114, 163, 189–91
 item, 95, 98, 149–50, 157, 174–76, 180, 187
 main, 82, 98
 pop-up, 163
 slug, 96–97
 title, 96–97
Mullenweg, Matt, 65, 204
MySQL, 12–14, 202
 server, 15
 settings, 17

O
object-oriented programming (OOP), 76, 78,
108

P
payment processing gateway, 182
PayPal, 6, 180, 182
PHP
 ecosystem, 76
 Functions, 76, 79, 84
 settings, 187
 version, 203
plugin
 code, 13, 77–78, 82–83, 93, 118, 120
 default, 15–16, 151
 development, 75–76, 78, 80, 82, 84, 86, 88,
90, 92, 94, 96, 98, 100, 102, 104
 distribute, 119
 ecommerce, 148
 example, 80, 138
 installation, 80, 149
 installed, 143, 150, 152, 165
 sample, 113, 138, 140
 slider, 178
posts
 context, 59–60
 current, 64, 195
 types, 130–31, 134, 167, 191–94
POT file, 144
 master, 145

R
reCAPTCHA, 101–2, 105–6, 109–12, 173,
176Sam
ple

WordPress Development in Depth208

10. Index

S
Search Engine Optimization. See SEO
security, 8, 18, 85, 138, 152, 174, 188
 practices, 68
 risk, 9
 SQL injection attacks, 79
SEO, 6–7, 171, 183–84
 content, 183, 185
 techniques, 7
shortcodes, 58, 67, 72, 77, 155, 159–60, 177, 179
 advanced, 58, 67
Simple Links, 159
site
 blog, 151
 performance, 188–89
 security, 8, 172
 staging, 80, 164, 166
SMS, 197
style sheets, 25, 27, 29, 31–33, 35–36, 125–27
 base, 29
 separate, 36
style tags, 29–31

T
taxonomies, 130, 134–35, 184
template, 58, 73–74, 85, 117–18, 125–26, 128,
131, 133–35, 144, 178
 file, 128, 131, 144–45, 154
 hierarchy, 128–29, 131, 133
 page, 131, 133
theme, 2, 5, 60, 62, 65, 74, 77, 121, 123–28,
131, 135, 165, 188, 195, 200–202
 active, 128
 child, 12, 121, 123–28, 130, 132, 134, 181, 195
 commercial, 178, 200, 203
 default, 5, 124
 customize, 127–28
 name, 125, 127
 original, 124–25
 parent, 121, 124, 126–27, 133
translations, 138–39, 141–46

U
updates, 17–19, 29, 59, 74, 76, 100, 103,
115–16, 118, 120, 128, 142–43, 148–49,
173–74, 207
 blocking, 124
 manually, 193
 minor, 18

V
VueJS, 31Sam
ple

The Community

WordPress Development in Depth 209

W
WAMP, 14
web server, 12–13, 15, 29, 161
Wicked Folders, 167
widget, 104–9, 111, 113, 152–54, 180–81, 190
 dashboard, 113, 120
 shopping cart, 154
 signup, 197
WooCommerce, 6, 77, 114, 128, 148, 167,
179–83, 190
Wordfence, 8, 16, 18, 172–74
WordPress
 admin area, 82, 97, 165, 197
 codex, 5, 129
 core, 76–77, 190, 204
 documentation, 67, 125, 127
 installations, 19–20, 97, 151, 197
 multisite instances, 189
 plugins, 57, 81, 113, 127, 201
 themes, 3, 123, 125, 200
 UI, 154, 190–91
 version, 18, 115–16, 168
WP Content Copy Protection, 163
WP Forms, 175, 177
WP Rollback, 165
WP Super Cache, 160–61

Y
Yoast SEO, 6, 183, 185

Z
ZIP file, 120, 150Sam

ple

	Foreword
	Planning a Website
	Overview
	Why WordPress?
	Technical Concerns
	Operational Considerations

	Development Environment Requirements
	HTML and CSS
	Overview
	Server Platforms Environments
	WordPress Install

	CSS Crash Course
	HTML
	Style Sheets
	Responsive CSS
	Conclusion

	The Gutenberg Editor
	The Block Editor
	Gutenberg’s Origin
	Building A Block
	Reusing A Block
	When To Use Gutenberg

	Plugin Development
	Preparation, Rules, Best Practices
	Example Plugin
	Basic Files And Folder Layouts
	Collecting And Saving Data
	Listing Collected Data
	Admin Menu Creation
	Admin Page Development
	Form Management
	Creating A Widget
	Creating A Dashboard Widget
	Troubleshooting And Debug Tools
	Installation And Update Processes
	Distributing Your Plugins
	Summary

	Child Themes
	Why Build A Child Theme?
	Customizing The Twenty Nineteen Theme
	Customizing Themes With The Child Themes Strategy
	Template Hierarchy
	Quick Reference

	Internationalization
	Translation Functions
	Preparing Your Code
	Translating A Settings Page
	The Loco Translate Plugin
	Viewing The Results

	The Best Plugins—Part One (Simple Tasks)
	How To Install And Activate A Plugin
	Akismet
	Available Updates
	Testimonial Rotator
	Custom Sidebars
	Store Locator Plus
	Duplicate Post
	Minimal Coming Soon & Maintenance Mode
	Add From Server
	Pop-up Maker
	Simple Links
	WP Super Cache And Autoptimize
	Smush
	WP Content Copy Protection & No Right Click
	GDPR Cookie Consent
	WP Rollback
	Custom Login
	Disable Gutenberg
	Wicked Folders
	Force Login

	The Best Plugins—Part Two (Advanced Tasks)
	Wordfence Security
	Google Analytics Dashboard For WP
	WP Forms
	Revolution Slider ($)
	WooCommerce
	Yoast SEO
	Ultimate Member
	All-in-One WP Migration
	HyperDB
	Adminimize
	Custom Post Types
	Posts 2 Posts
	RCCP-Free

	Other Resources
	Themes
	Web Resources
	Troubleshooting Assistance
	Finding a Great Host
	The Community

	Index

