
www.phparch.com

Parallel Parallel
RunningRunning

Education Station:Education Station:
Race Conditions and Race Conditions and
Dead LocksDead Locks

Community Corner: Community Corner:
LarabellesLarabelles

The Workshop: The Workshop:
PHP Development with PHP Development with
Homestead in WSLHomestead in WSL

Sustainable PHP:Sustainable PHP:
Refactor to Competitive Refactor to Competitive
AdvantageAdvantage

Security Corner:Security Corner:
Observable SecurityObservable Security

PHP Puzzles: PHP Puzzles:
Improved DirectionsImproved Directions

finally{}:finally{}:
Async LifeAsync Life

AL
SO

 IN
SI

D
E

AL
SO

 IN
SI

D
E

Build An All-In-One Application Build An All-In-One Application
Server Using SwooleServer Using Swoole

More Than Asynchronous I/O, More Than Asynchronous I/O,
Introduction To Swoole PHPIntroduction To Swoole PHP

Serverless File UploadingServerless File Uploading

October 2020October 2020
Volume 19 - Issue 10Volume 19 - Issue 10

Oscar
Free Sample

a php[architect] anthology

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

https://phpa.me/devlead-book
http://phpa.me/grumpy-testing-book

Build a custom, secure, multilingual website with WordPress

WordPress is more than a blogging platform—it powers one-fifth of all
sites. Since its release, enthusiastic contributors have pushed the en-
velope to use it as a platform for building specialized social networks,
e-commerce storefronts, business sites, and more. This guide helps you
sort through the vast number of plugins available to find the ones that
work for you. You’ll also learn how to use CSS and PHP code to tailor
WordPress to your needs further.

Written by PHP professionals Peter MacIntyre and Sávio Resende, this
book distills their experience building online solutions for other Word-
Press site builders, developers, and designers to leverage and get up to
speed quickly.

Read a sample and purchase your copy at the link below.

Order Your Copy
http://phpa.me/wpdevdepth-book

https://phpa.me/devlead-book
http://phpa.me/wpdevdepth-book

8 \ October 2020 \ www.phparch.com

FEATURE

More Than Asynchronous I/O,
Introduction To Swoole PHP

Bruce Dou

Swoole PHP is a coroutine based asynchronous network application framework. It is a PHP
extension that extends PHP core and utilizes more power provided by Linux OS. Unlike the
callback style single thread asynchronous I/O provided by the other networking libraries like
Node.js, Swoole PHP has multiple asynchronous I/O threads and native coroutines to manage
the execution of concurrent tasks. Other than asynchronous I/O and coroutine, we can also
use the Linux system API and interface exposed by Swoole PHP, such as process management,
system signals handling, timer and scheduler, poll and epoll I/O, memory management, etc.

What Problem Does Swoole PHP Solve?
Swoole PHP1 is designed for building large scale concur-

rent systems. The system needs to manage more than 10K
concurrent connections. It is a solution to the famous C10K
problem with PHP and a stateful architecture.

We cannot use PHP-FPM’s stateless nature to build a
system with modern web protocols like WebSockets, which
require establishing persistent connections with every user
and sending, receiving data in real-time.

With Swoole PHP, building a real-time service is as simple
as building PHP-FPM applications we are familiar with. You
can define how to respond to requests in the predefined call-
back functions to build a WebSocket server or TCP/UDP
server with only several lines of code.

Compared with the other single thread callback style
asynchronous I/O frameworks built with PHP or JavaScript,
Swoole is released as a PHP extension, including high-per-
formance protocol parsers written with C/C++, multiple
asynchronous I/O handling threads, native lightweight
thread coroutine, and multiple processes architecture.

Swoole PHP also exposes the under layer Linux API to
the PHP layer. With it, we can use PHP to build system-level
software.

It is not designed to replace the stateless PHP-FPM but as
a different and additional stateful programming model for
PHP developers and system architects. Unlike PHP-FPM,
a Swoole application is started as a Linux process you can
define with PHP code. If you are not deploying it with Docker,
you can use a Linux process manager such as supervisord or
systemd to manage the Swoole application.

Swoole PHP provides coroutine and asynchronous I/O for
concurrent programming, which we can use to manage thou-
sands of persistent concurrent connections either as a server
or as a client with only one process.

1 Swoole PHP: https://www.swoole.co.uk

The First Glance: HTTP Echo Server
Let’s start with an echo server with HTTP protocol shown

in Listing 1, which processes an HTTP request and sends
back a hello world HTTP response to a browser or HTTP
client. It is executed as a PHP CLI application. Use a port
number more than 1024 if you like to run the application as
a non-root user.

Compared with PHP-FPM applications we are familiar
with, there is a bit more boilerplate code. We have to define
a server with an IP address, port to bind on first, and then
define how we process the HTTP request. It gives us more
flexibility since we can choose the IP address, port, protocol
at the PHP application layer. Traditional PHP applications
that sit behind a web server couldn’t change those values.

When the server starts, it initializes several reactor threads
implemented with epoll in Linux or kqueue in OSX to
perform non-blocking I/O operations. Event loops manage
the status of file descriptors in these reactor threads. Swoole

Listing 1.

 1. <?php
 2. declare(strict_types=1);
 3.

 4. use Swoole\HTTP\Server;
 5. use Swoole\Http\Request;
 6. use Swoole\Http\Response;
 7.

 8. $server = new Server("0.0.0.0", 9900);
 9.

10. $server->on("request",
11. function (Request $request, Response $response) {
12. $response->header("Content-Type", "text/plain");
13. $response->end("Hello World\n");
14. }
15.);
16.

17. $server->start();

Sam
ple

phparch.com
https://www.swoole.co.uk

 www.phparch.com \ October 2020 \ 9

More Than Asynchronous I/O, Introduction To Swoole PHP

doesn’t support Windows OS unless you run it inside a Linux
environment with Docker.

To better utilize the power of the multiple CPU cores, we
create numerous worker processes to serve the requests
sent to the server. The data received by reactor threads are
dispatched to the callback functions in the worker processes
registered on the server.

We can also write similar code to create a Server speaking
with other protocols such as TCP, UDP, WebSocket, MQTT,
etc. The code in Listing 2 is a similar server with TCP protocol.

If we build a similar TCP server with socket API provided
by PHP, there will be much more boilerplate code, and
you have to understand how Linux sockets work. You can
compare the above code with the PHP sockets example2.

You can send a TCP package hey to the server with Netcat nc
and receive the response generated by the server: Hello: hey.

(echo 'hey'; sleep 1) | nc 127.0.0.1 9900

You can define a custom protocol using the TCP protocol
specifically fitting for your application to reduce HTTP overhead.

Event Emitter And Timer
When thinking about web applications, the execution

can be triggered by an HTTP request or triggered by some
predefined events or rules.

For example, many PHP applications perform house-
keeping jobs with fixed intervals like sending the daily email,
sending a queued email, refreshing caches, recalculating a
billboard, or pushing fresh data to the user’s browser.

We can do this with Linux CRON jobs to simulate user
requests by sending an HTTP request to the HTTP applica-
tion, or run a PHP CLI script to avoid the HTTP server-side
timeout limitation. But this approach relies on an external
system CRON with a minimum minute interval scheduler. To
schedule second interval tasks with CRON, sleep is required,
which is more complex and inconvenient.

In Swoole PHP, we can define a ticker executed every
second or even every millisecond within Server and start the
ticker with the Server, see Listing 3.

Notice the ticker only executes in one worker, which is the
one with worker_id of 0 (zero). As mentioned before, the
server creates multiple worker processes, and we only want
the events to be triggered once per second. Otherwise, all the
worker threads would fire every second.

With the ability to trigger an event every second or every
millisecond, we can build near-real-time applications.

Compare With PHP-FPM
Swoole PHP runs as a PHP CLI application. It doesn’t rely

on external process manager PHP-FPM or Apache server.

2 PHP sockets example: https://php.net/sockets.examples

PHP-FPM helps us to manage multiple PHP processes
serving the HTTP requests. So, we don’t have to think about
Process Management when writing PHP applications. The
downside is that we cannot define or customize how PHP
processes are launched or managed with PHP.

PHP-FPM is a stateless design; the whole context is created
when a new request is received and destroyed when the request
finishes. The stateless and share-nothing design means we
can’t save the global state within the PHP process for different
requests. We have to re-create them every time or save that

Listing 3.

 1. <?php
 2. declare(strict_types=1);
 3.

 4. use Swoole\HTTP\Server;
 5. use Swoole\Http\Request;
 6. use Swoole\Http\Response;
 7.

 8. $server = new Server("0.0.0.0", 9900);
 9.

10. $server->on("workerStart",
11. function (Server $server, int $worker_id) {
12. if ($worker_id === 0) {
13. $server->tick(1000, function () {
14. echo time() . "\n";
15. });
16. }
17. }
18.);
19.

20. $server->on("request",
21. function (Request $request, Response $response) {
22. $response->header("Content-Type", "text/plain");
23. $response->end("Hello World\n");
24. }
25.);
26.

27. $server->start();

Listing 2.

 1. <?php
 2. declare(strict_types=1);
 3.

 4. use Swoole\Server;
 5.

 6. $server = new Server("0.0.0.0", 9900);
 7.

 8. $server->on("receive",
 9. function (Server $server, int $fd,
10. int $reactor_id, string $data) {
11. $server->send($fd, "Hello: {$data}");
12. $server->close($fd);
13. }
14.);
15.

16. $server->start();

Sam
ple

phparch.com
https://php.net/sockets.examples

10 \ October 2020 \ www.phparch.com

More Than Asynchronous I/O, Introduction To Swoole PHP

state somewhere. Although most global state resources do not
change from request to request, they are repeatedly created and
destroyed. In Swoole PHP, resources are reused by multiple
requests, thus has a much better performance.

The I/O in PHP-FPM is blocking by default. Everything is
sequential, even for the independent tasks within a request,
they have to be executed one by one. In Swoole PHP, separate
logics within a request can be performed concurrently with
multiple coroutines to reduce the request latency.

There is only one protocol supported by PHP-FPM, which
is FastCGI. We need a proxy like NGINX to convert the
HTTP protocol to FastCGI and back. Swoole PHP provides
the most commonly used protocols such as TCP, UDP, HTTP,
WebSocket, etc. You can find more about the protocols
supported by Swoole3.

Process Management
We always like to finish a task faster. But you might see it

is difficult to utilize all the CPU cores on your machine when
running PHP CLI scripts to process a large amount of data.

We can use the power of all CPU cores with a message
queue and manage multiple identical consumer processes
with Swoole\Process\Pool (Listing 4).

You can send tasks or events into the process pool as JSON
strings with TCP protocol, or pull the data from an external
message queue like Redis or RabbitMQ and process the
messages with these processes.

When a process terminates unexpectedly, the pool will
launch another process to maintain the defined number of
processes.

Integrate With Linux Processes
Swoole PHP provides a set of complete and straightfor-

ward APIs similar to pcntl_fork. We can define multiple
processes, wrap the logic into the processes, access Linux
native processes, and easily communicate with them.

Let’s see an example about how to expose a Linux process
into your PHP application. Refer to Listing 5.

We have created a cat process reading the Linux loadavg
status and send the data to the main process in this example.
Swoole PHP has given PHP developers the power to access
any Linux processes. It is convenient for system integration
or exposes any Linux command-line application as an HTTP
service. Swoole\Process::exec() is an API provided by Swoole
to execute external commands and communicate with the
command. You can find more about Swoole\Process::exec()4

3 the protocols supported by Swoole:
https://www.swoole.co.uk/protocols
4 Swoole\Process::exec():
http://phpa.me/swoole-process-exec

Coroutine

Execution Containers: Process, Thread, And
Coroutines

Processes are fundamental top-level execution containers
in an operating system. They are separate tasks. Each has its
dedicated memory system, and their heaps and stacks run
concurrently within the OS. The Linux kernel manages the
scheduling of different processes running on the same CPU
cores and hardware.

Threads in Linux, on the other hand, run within one
process and share some resources between them. They can
share memory. If we want to communicate between two
threads, we can define a global variable in one thread and
access it directly from another one.

A coroutine in Swoole PHP is the lightweight thread created
within one Linux process. Coroutines have their stack and
share the global status of a PHP process like heap and other
resources.

Compared with a Linux process that may reserve 8MB
memory for the stack, coroutine in Swoole PHP only uses
8KB for each coroutine stack by default. By minimizing
memory allocation, a coroutine is more scalable for handling
concurrent I/O.

Listing 5.

 1. <?php
 2. declare(strict_types = 1);
 3.

 4. use Swoole\Process;
 5.

 6. $loadavg = new Process(function($process){
 7. $process->exec("/bin/cat", ["/proc/loadavg"]);
 8. }, TRUE);
 9.

10. $loadavg->start();
11. $result = $loadavg->read();
12. echo $result;

Listing 4.

 1. <?php
 2.

 3. use Swoole\Process\Pool;
 4.

 5. const N = 10;
 6.

 7. $pool = new Pool(N, SWOOLE_IPC_SOCKET);
 8.

 9. $pool->on("message", function ($pool, $message) {
10. echo "Message: {$message}\n";
11. });
12.

13. $pool->listen("127.0.0.1", 8089);
14.

15. $pool->start();

Sam
ple

phparch.com
https://www.swoole.co.uk/protocols
http://phpa.me/swoole-process-exec

 www.phparch.com \ October 2020 \ 11

More Than Asynchronous I/O, Introduction To Swoole PHP

Instead of being run on kernel threads and scheduled by
the operating system, coroutines are scheduled by the Swoole
PHP scheduler5. It is not necessary to jump into the kernel
space, so there is less overhead for doing the context switch
between different execution containers. Only the pointers to
local coroutine stacks are changed. The global space stays the
same, which is much more efficient.

Coroutine Concurrent Execution
A coroutine is a closure function initialized with corou-

tine::create() or the short name form go(), we can pass
contextual variables into the closure with use the same as
PHP-FPM.

Multiple coroutines within the same process have the
minimum isolated execution context, use the minimum dedi-
cated resources on your machine and schedule based on I/O
waiting and ready status.

Instead of binding concurrent execution with processes
like PHP-FPM, you can bind concurrent execution with the
lightweight coroutines using much less memory within the
Swoole PHP process. Instead of handling several hundred
connections with hundreds of processes, we can handle at
least 1K connections with one process.

Compared with the nested callback programming style
dealing with concurrent programming, it is more convenient
to write the codes with sequential coroutine blocks. We can
think of each concurrent block as a lightweight thread corou-
tine to avoid the callback hell.

The synchronization and communication between different
coroutines can be done through a Channel object similar to
the channel in Golang, as in Listing 6.

The example code sums the random numbers generated in
two coroutines. Both of the coroutines execute concurrently.
Once both coroutines have completed their computation, it
calculates the final result.

The co::sleep is used to simulate I/O latency within the
coroutine. PHP’s functions using syscall, such as sleep(),
should not be used within the coroutine context because it is
scheduled by the Linux kernel and blocks the whole process.
Instead, use the coroutine version function co::sleep(),
scheduled by Swoole PHP scheduler with the event loop.

The total time used by an application should be the
maximum time of each coroutine in the execution flow, but
not the sum time of each coroutine because they should run
in parallel. In this way, we can massively reduce the overall
latency of a user request.

The above code shows how multiple coroutines execute
concurrently and communicate with each other through a
channel.

We can think of channel as a message queue with fixed sizes,
pushes or pops block until the other side is ready. It can be
used by coroutines to synchronize without explicit locks.

5 Swoole PHP scheduler: http://phpa.me/swoole-coroutine

You can write a similar piece of code within the HTTP call-
back block and execute multiple blocks with the database I/O
or cache I/O concurrently to achieve low latency.

Co And Coroutine Context
As seen in the code from the previous section, a coroutine

context is created with function co\run(). Then multiple
concurrent coroutines can be created with the function go()
within the coroutine context.

A coroutine context is created in a server automatically for
each request or receive callback function. Multiple indepen-
dent coroutines can be created and executed concurrently
within the request or receive callback functions.

Variable Scope And Life Cycle
The scope of a variable is the context within which it is

defined and can be used safely. The variable scope in Swoole
PHP is different with PHP-FPM. Understanding the variable
scope can help you avoid memory leaks and unexpected
effects.

We can use several types of variables in Swoole PHP, similar
to PHP-FPM: local variables, global variables, static variables.

Local variables within a coroutine are created and destroyed
with the life cycle of the coroutine. They are not visible to
other coroutines.

As mentioned before, coroutines are lightweight threads,
multiple coroutines share global variables, and static
variables within the same process. But you have to be very
careful when using these global variables and take care of
the life cycle. The reason is Swoole PHP may launch multiple

Listing 6.

 1. <?php
 2.

 3. use Swoole\Coroutine\Channel;
 4.

 5. Co\run(function() {
 6. $chan = new Channel(1);
 7.

 8. go(function() use ($chan) {
 9. Co::sleep(0.1);
10. $n = rand(1000, 9999);
11. echo $n. "\n";
12. $chan->push($n);
13. });
14.

15. go(function() use ($chan) {
16. Co::sleep(0.5);
17. $n = rand(1000, 9999);
18. echo $n. "\n";
19. $chan->push($n);
20. });
21.

22. $sum = $chan->pop() + $chan->pop();
23. echo $sum. "\n";
24. });

Sam
ple

phparch.com
http://phpa.me/swoole-coroutine

12 \ October 2020 \ www.phparch.com

More Than Asynchronous I/O, Introduction To Swoole PHP

processes, one worker process may be terminated, and a new
worker process may be launched at any time.

On the other hand, it is worth mentioning global and
static variables can not be shared across multiple processes.
So it is not recommended to use them in your Swoole PHP
application. The superglobal variables provided by PHP-FPM
like $GLOBALS, $_GET also should not be used within a Swoole
PHP server. Instead, Swoole\HTTP\Request6 should be used to
access the variables of an HTTP request, and Swoole\HTTP\
Response should be used to write the response data.

In general, it is not recommended to use global variables
in Swoole PHP. Instead, use external storage or the built-in
memory storage provided by Swoole PHP when required.

Built-in Memory Storage
Where to store the application states is always a tradeoff

about the scalability and performance when designing
a system because of the latency and overhead. Correctly
using and managing the local status is the key to building a
high-performance system.

In a typical PHP-FPM system, your application would
either need to make a network call to a remote database or
connect to the database process on the same machine. Either
way, there is an amount of latency overhead. With Swoole
PHP, you can store states like variables that can be reused

6 Swoole\HTTP\Request: http://phpa.me/swoole-http-request

across different requests or database connections locally
within the same memory space as the application.

Internally, Swoole PHP may launch multiple processes
depending on the server configuration. Global variables
should not be used across multiple processes. So, in Swoole
PHP, there is an atomic counter Atomic that can be safely
accessed and updated concurrently by numerous processes.
You can also use in-memory ephemeral key-value storage
Table7 to store more complex data structure.

The typical use case of Table is storing the per-connection
user status of a WebSocket Server.

CPU Intensive Logics And Preemptive
Scheduling

A good consumer-facing system has to ensure fairness to
serve different users, different requests, and avoid the long-
tail latency. You can use Swoole PHP where you need soft
real-time latency guarantees, such as in a real-time bidding
or trading system.

Other than I/O based scheduling, Swoole PHP has the
preemptive scheduling mechanism for soft real-time latency
guarantees.

Like the scheduler of Linux OS, each coroutine is allowed
to run for a small amount of time, 5ms. When this time has
expired, another coroutine is selected to run. The original

7 Table: http://phpa.me/swoole-table

OSMI Mental Health in Tech Survey
Take our 20 minute survey to give us
information about your mental health
experiences in the tech industry. At the
end of 2020, we’ll publish the results
under Creative Commons licensing.

Take the survey: https://phpa.me/osmi-survey-2020

Sam
ple

phparch.com
http://phpa.me/swoole-http-request
http://phpa.me/swoole-table

 www.phparch.com \ October 2020 \ 13

More Than Asynchronous I/O, Introduction To Swoole PHP

coroutine is made to wait for a little
while until it can run again.

This is essential when there is CPU
intensive logic within your applica-
tion. Because multiple requests are
processing concurrently within one
process, we don’t want one request to
block all the other requests just because
the CPU calculation is not finished.
Instead, the scheduler should pause
the current coroutine and switch to the
other coroutines for better utilizing the
resources.

Use Cases And Patterns
Compared with the stateless

PHP-FPM model, Swoole provides a
stateful server model for PHP devel-
opers. Much more can be accomplished
with PHP syntax.

HTTP Services
As Swoole HTTP Server provides the

request and response mechanism, it
can be used as an HTTP server running
your PHP application. But you might
have to make changes to the global
variables and static variables, binding
them with an HTTP request.

Besides running as an HTTP Server
similar to PHP-FPM, there are several
other everyday use cases.

Client-side Connection Pooling
Swoole can be used as a connection

pool sidecar of PHP-FPM and estab-
lish persistent connections to a remote
database or services. In this way, the
latency with the remote database is
mostly reduced.

HTTP Proxy And API Gateway
Swoole PHP can be used as an HTTP

proxy in front of your application to
inspect, modify the HTTP request or
response.

You can build a throttling and
rate-limiting authentication proxy layer
with PHP logics.

Message Queue Consumer
Workers

Lots of people use it to manage the
message queue consumer processes to

do large scale data processing. It is a
perfect fit for event-driven architecture.

The events can be pulled with
multiple processes within one Swoole
Process Pool and pushed back to your
internal PHP-FPM HTTP services or
serverless APIs.

Access And Integrate With Linux
Processes

For instance, you can also build
a simple Linux monitoring system
by scraping /proc stats every second
and sending a notification to a Slack
channel or your email when the status
reaches the threshold you have defined.
Or the system status can be reported to
a central server and provide you with
an aggregated status.

As An Aggregate And Routing
Layer For Microservices

The routing logic can be implemented
with PHP and dynamically created and
updated by the PHP application. As
a front door aggregate layer of your
microservices, multiple calls to different
services can happen concurrently.

Integrate With Your ServerLess
Stack

Serverless architecture computing is
gaining popularity. Swoole PHP can be
used to glue Serverless services.

You can use Swoole PHP as the API
gateway or aggregate layer for your

ServerLess stack. Or generate the ticker
to trigger the execution flow of the
ServerLess stack. Deliver the events in a
message queue to your serverless APIs.

Conclusion
The typical use case of Swoole PHP

is the same as PHP-FPM, building a
high-performance HTTP service. We
can also use it to make TCP services
with a custom protocol or stateful
applications. Or run it as a sidecar with
PHP-FPM application for background
data processing or scheduler. You can
also use Swoole PHP as an integration
layer to access and integrate with native
Linux applications and processes.

After reading this article, I hope you
can see how Swoole can be used as a new
component within your existing system
and architecture. Web framework
authors are encouraged to integrate the
framework with Swoole PHP to gain a
much better performance. For a large
scale web system, by migrating into
Swoole PHP, you usually can save 80%
of the server resources.

Swoole PHP opened the door of
system-level programming for PHP
developers, providing the lightweight
thread coroutine and asynchronous
I/O API to the PHP userland. It is a new
PHP programming model compared
with the PHP-FPM application we
are familiar with. A little piece of PHP
code wrapped with Co\run can do much
more than we expected.

 Bruce Dou is the Director at Transfon, a UK based
company building modern infrastructure for publishers and
marketers, providing support, consultancy and managed
services of PHP Swoole systems. He is one of the maintainers
of open source PHP Swoole, specialized in application perfor-
mance optimization, system cost reduction, cloud migration,
web infrastructure and large-scale system architecture.

Related Reading

• Asynchronous Programming in PHP by Lochemem Bruno Michael, June
2020. https://phpa.me/async-php-june-20

• Evolving PHP by Chris Pitt, March 2018.
https://phparch.com/article/evolving-php/

• Distributed Workers and Events by Christopher Pitt, June 2016.
https://www.phparch.com/magazine/2016-2/august/

Sam
ple

phparch.com
https://phpa.me/async-php-june-20
https://phparch.com/article/evolving-php/
https://twitter.com/mbniebergall

http://phpa.me/mag_subscribe

	More Than Asynchronous I/O, Introduction To Swoole PHP
	Bruce Dou

