
www.phparch.com

PHP 8 Bits PHP 8 Bits
and Gitand Git

Education Station:
Using Factories and Hydration

PHP Puzzles:
Grid Mapping

The Workshop:
Git Hooks with CaptainHook

Sustainable PHP:
Deep Problem Analysis

Security Corner:
Circuit Breakers

Community Corner:
An Interview with Andreas Heigl

finally{}:
ResolutionsAL

SO
 IN

SI
D

E

PHP 8 DistilledPHP 8 Distilled

Applying Best Coding Applying Best Coding
Practices to PHP, Part TwoPractices to PHP, Part Two

Power Up with GitPower Up with Git

December 2020
Volume 19 - Issue 12

Oscar
Free Sample

a php[architect] anthology

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

https://phpa.me/devlead-book
http://phpa.me/grumpy-testing-book

Build a custom, secure, multilingual website with WordPress

WordPress is more than a blogging platform—it powers one-fifth of all
sites. Since its release, enthusiastic contributors have pushed the en-
velope to use it as a platform for building specialized social networks,
e-commerce storefronts, business sites, and more. This guide helps you
sort through the vast number of plugins available to find the ones that
work for you. You’ll also learn how to use CSS and PHP code to tailor
WordPress to your needs further.

Written by PHP professionals Peter MacIntyre and Sávio Resende, this
book distills their experience building online solutions for other Word-
Press site builders, developers, and designers to leverage and get up to
speed quickly.

Read a sample and purchase your copy at the link below.

Order Your Copy
http://phpa.me/wpdevdepth-book

https://phpa.me/devlead-book
http://phpa.me/wpdevdepth-book

Editorial

PHP 8 Bits and Git
Osccar Merida

As scheduled, PHP 8 was released at the end of
November. Congratulations are in order for the
release maintainers and all contributors involved.
In this twelfth issue, we have an in-depth dive
into the changes in PHP 8, how to write better
code with calisthenics, powering up Git with
aliases and hooks, and more.

1	 Commit Strip: https://www.commitstrip.com/?p=21058

While wrapping up this issue, news
broke that Salesforce is acquiring
Slack for $28 billion. This morning,
my Twitter feed had no shortage of
messages about how PHP is a core part
of the platform. Over at Commit Strip1,
they predict—or is it caution?—that
PHP/jQuery/WordPress is a good bet
to be around in a decade.

Let’s enjoy this moment. PHP
continues to mature, as evidenced by
the recent release of PHP 8. The only
value in any tech stack is tied to how
well it helps people solve problems. In
the last decade, PHP has shed language
features that led to security issues
and promoted poor coding practices.
Internals has settled into an effective
planning model via RFCs that enables
consistent annual releases. While new
technologies and opportunities to apply
them will certainly open up, it would
take a massive effort across the web to
migrate away from PHP to something
else.

Let's start in PHP 8 Distilled by
Matthew Turland. He writes about
new language features you can use,
deprecations and removed extensions
to watch out for, and tools to stream-
line upgrading your application code
to it. Vinícius Campitelli returns with
Applying Best Coding Practices to PHP,
Part Two to look at how you can use
practical rules along with the SOLID
principles discussed last month. In
Power Up with Git, Andrew Woods

explains how you can customize and
create new Git commands to make your
workflow more efficient. Even if you’re
a seasoned veteran, check this one out.
You’re bound to learn a new alias or
approach to working with it.

Are you ready to try a puzzle? Sherri
Wheeler has one in PHP Puzzles: Grid
Mapping. She looks at a few solutions
for rendering a map grid. Venturing
into The Workshop, Joe Ferguson
shares another way to automate things
in Git Hooks with CaptainHook. It’s
handy if you need a straightforward
way to share hooks with colleagues. In
Security Corner: Circuit Breakers, Eric
Mann explains how to use the circuit
breaker pattern to make your applica-
tion more resilient. If you depend on
one or more third-party APIS, give it
a read. Chris Tankersley shares Using
Factories and Hydration in Education
Station. He’ll show you how to decouple
your objects with factories and clarify
the distinction between object creation
and adding data to them. Eric Van
Johnson has An Interview with Andreas
Heigl in Community Corner. He learns
about how Andreas got involved with
PHP and his contributions towards
moving the PHP documentation to Git.
Do you need Deep Problem Analysis?
Edward Barnard offers a case study
in tackling a tricky problem to come
up with a working solution. As this
year finally{} ends, Beth Tucker Long
suggests Resolutions we can make to use
our tech skills for the common good.

Write For Us
If you would like to contribute,

contact us, and one of our editors
will be happy to help you hone
your idea and turn it into a beauti-
ful article for our magazine.

Visit https://phpa.me/write
or contact our editorial team
at write@phparch.com and get
started!

Stay in Touch
Don't miss out on conference,

book, and special announcments.
Make sure you're connected with
us.
•	 Subscribe to our list:

http://phpa.me/sub-to-updates
•	 Twitter: @phparch
•	 Facebook:

http://facebook.com/phparch

Download the Code
Archive:
http://phpa.me/December2020_code

https://www.commitstrip.com/?p=21058
https://www.phparch.com/editorial/write-for-us
mailto:write@phparch.com
http://phpa.me/sub-to-updates
http://twitter.com/phparch
http://facebook.com/phparch
http://phpa.me/December2020_code

 www.phparch.com \ December 2020 \ 3

PHP 8 DistilledFEATURE

PHP 8 Distilled
Matthew Turland

PHP 8 is a significant release for much more than just its version number: it’s
absolutely packed with shiny new language features, potential performance
improvements, and fixes to many unintuitive behaviors and inconsistencies in
previous iterations of the language.

1	 relevant RFCs: https://wiki.php.net/rfc#php_80
2	 migration guide: https://php.net/en/migration80
3	 Constructor prototype promotion:
https://wiki.php.net/rfc/constructor_promotion
4	 proposal: https://wiki.php.net/rfc/named_params

This article won’t provide a comprehensive review of every
new addition or change to the language. For that, it’s best
to review the relevant RFCs1, or migration guide2. However,
it provides an overview of major new features and notable
changes, as well as direction on how to get started with your
upgrade.

New Features

Constructor Prototype Promotion
One long-held annoyance with the PHP object model

involves the amount of boilerplate required to declare instance
properties in a class, receive values for them via constructor
parameters, and then assign those parameter values to those
instance properties.

Constructor prototype promotion3 deals with the typical
use case for this situation. It offers a syntax that makes the
explicit assignment statements in the constructor body
implicit and consolidates the instance property declarations
into the constructor parameter declarations, which are then
called “promoted parameters.” See Listing 1 for what this
syntax looks like.

Before any logic in the constructor body executes (assuming
it’s not empty), assignments for promoted properties happen
implicitly in these new constructors. These assignments
require the constructor parameters to have the same names
as their intended corresponding instance properties.

However, this feature does not support some use cases.

•	 Parameters with a callable typehint,
https://wiki.php.net/rfc/callable

•	 Variadic parameters, https://wiki.php.net/rfc/variadics
•	 Parameters with a default value of null that

don’t include an appropriate nullable typehint,
https://wiki.php.net/rfc/nullable_types

•	 Parameters in abstract classes and interfaces

Named Arguments
If you’ve ever used Python, you may already be familiar

with this feature through its implementation in that language,
known as keyword arguments.

Named arguments have been a long-disputed addition
going back years. The original proposal4 made in 2013 saw
significant updates and eventual acceptance in 2020. Without
parser support, many library authors fall back on using arrays
to pass in parameters, which is problematic for documenting
and enforcing expectations.

To use this feature, you specify values for arguments passed
to functions or methods with the name of the corresponding
parameter from the function or method signature, rather
than passing those arguments in the same positional order as
their corresponding parameters in that definition.

Listing 1.

 1. <?php
 2.
 3. /* Instead of this... */
 4.
 5. class Point {
 6. private float $x;
 7. private float $y;
 8. private float $z;
 9.
10. public function __construct(
11. float $x = 0.0,
12. float $y = 0.0,
13. float $z = 0.0,
14.) {
15. $this->x = $x;
16. $this->y = $y;
17. $this->z = $z;
18. }
19. }
20.
21. /* ... you can now do this. */
22.
23. class Point {
24. public function __construct(
25. private float $x = 0.0,
26. private float $y = 0.0,
27. private float $z = 0.0,
28.) {}
29. }

phparch.com
https://wiki.php.net/rfc#php_80
https://php.net/en/migration80
https://wiki.php.net/rfc/constructor_promotion
https://wiki.php.net/rfc/named_params
https://wiki.php.net/rfc/callable
https://wiki.php.net/rfc/variadics
https://wiki.php.net/rfc/nullable_types

4 \ December 2020 \ www.phparch.com

PHP 8 Distilled

Doing so is useful when a function or method has many
parameters. Another case is when it has a parameter before
the end of the parameter list with a default value you don’t
want to pass in explicitly. It can also increase the readability
of code for function and method calls by making it easier to
assess which argument value corresponds to which defined
parameter visually.

See Listing 2 for an example of this feature in action. When
using a named argument, specify the argument name without
the leading $ included in the parameter name when defining
the function or method. A colon (:) follows the name and
is then followed by the value for that argument. A comma
(,) delimits named arguments as it does traditional positional
arguments.

This feature does have some constraints to be aware of.

•	 Specifying parameter names that are not part of a meth-
od or function signature produces an error. Concerning
semantic versioning, this means that changing param-
eter names in method and function signatures are now
backward-incompatible change.

•	 Positional arguments must precede named arguments in
calls that use both. Otherwise, they produce a compile-
time error.

•	 Both named and positional arguments must precede
any unpacked arguments5. Where array keys were
previously ignored when using argument unpacking or
call_user_func_*(), they now map to named arguments.

•	 Passing the same argument multiple times results in an
error. This is the case whether the offending argument
is passed by name each time or is specified using both
positional and named arguments that correspond to the
same parameter.

•	 Variadic method and function definitions will collect
unknown named arguments into the variadic parameter6.

5	 unpacked arguments: https://wiki.php.net/rfc/argument_unpacking
6	 variadic parameter: https://phpa.me/rfc-variadics-population

Attributes
Of all the new features in PHP 8, this feature is perhaps

the most controversial. Its purpose is to offer a natively-sup-
ported way to add metadata to units of code (i.e., classes,
methods, functions, etc.). It already sees adoption from
projects like Psalm7. There’s even been some discussion8 of
trying to standardize attributes across projects with similar
purposes to allow for cross-compatibility.

In the past, we’ve commonly added metadata to code units
using docblock annotations, an old concept popularized by
projects like:

•	 phpDoc, https://www.phpdoc.org
•	 PHPUnit, https://phpunit.readthedocs.io
•	 Symfony, https://symfony.com,
•	 Doctrine, https://doctrine-project.org,
•	 and later Psalm, https://psalm.dev and Psalm,

https://psalm.dev
There have even been some attempts to standardize tags

for phpDoc-like projects via PHP-FIG proposals PSR-59
and PSR-1910. The usefulness of annotations has dwindled
somewhat in recent years as new language features, such as
parameter and return types11, have gradually taken their place.
The advantage of attributes is that we can inspect them using
the reflection API; no third-party tools or manual DocBlock
parsing is required.

The first proposal12 for attributes came in 2016 but was
ultimately declined. The idea went dormant for years before
being proposed again13 in 2020. Even after its acceptance, it
underwent some amendments14. Then it received a shorter
syntax15. Then that shorter syntax was also amended16. You
can rest assured that the ideas and implementation behind
attributes were thoroughly discussed and evaluated.

To show how attributes work, let’s look at an example that
other language features haven’t supplanted yet: the @link17
DocBlock tag, which associates a link to an external resource
with the code it annotates. This tag has two parameters:
the URI of the resource and an optional description. One
potential use for this is linking to bug reports affecting depen-
dencies used by the annotated code.

7	 Psalm: https://psalm.dev/articles/php-8-attributes
8	 some discussion: https://phpa.me/colinodell-132338
9	 PSR-5: https://phpa.me/phpdoc-proposed
10	 PSR-19: https://phpa.me/psr19-doc-tags
11	 parameter and return types: https://wiki.php.net/rfc/typechecking
12	 first proposal: https://wiki.php.net/rfc/attributes
13	 proposed again: https://wiki.php.net/rfc/attributes_v2
14	 some amendments: https://wiki.php.net/rfc/attribute_amendments
15	 shorter syntax: https://wiki.php.net/rfc/shorter_attribute_syntax
16	 was also amended:
https://wiki.php.net/rfc/shorter_attribute_syntax_change
17	 @link: https://phpa.me/phpdoc-link

Listing 2.

 1. <?php
 2.

 3. /* Instead of having to explicitly specify the default
 4. value of the $flags argument, named arguments allow you
 5. to skip it by specifying the name of the following
 6. $double_encode parameter. */
 7.

 8. htmlspecialchars($string, double_encode: false);
 9.

10. /* The usefulness of this becomes more obvious in functions
11. with a lot of parameters with default values. It also
12. makes scalar arguments more self-documenting. */
13.

14. setcookie('name', '', 0, '', '', false, true);
15. // versus
16. setcookie('name', httponly: true);

phparch.com
https://wiki.php.net/rfc/argument_unpacking
https://phpa.me/rfc-variadics-population
https://www.phpdoc.org
https://phpunit.readthedocs.io
https://symfony.com
https://doctrine-project.org
https://psalm.dev
https://psalm.dev
https://psalm.dev/articles/php-8-attributes
https://phpa.me/colinodell-132338
https://phpa.me/phpdoc-proposed
https://phpa.me/psr19-doc-tags
https://wiki.php.net/rfc/typechecking
https://wiki.php.net/rfc/attributes
https://wiki.php.net/rfc/attributes_v2
https://wiki.php.net/rfc/attribute_amendments
https://wiki.php.net/rfc/shorter_attribute_syntax
https://wiki.php.net/rfc/shorter_attribute_syntax_change
https://phpa.me/phpdoc-link

 www.phparch.com \ December 2020 \ 5

PHP 8 Distilled

First, we must define the attribute using a class like the one
in Listing 3. This class is itself annotated with an attribute
named Attribute defined by PHP core. #[and] demarcate
the start and end, respectively, of the code for the attribute.
This Attribute attribute informs PHP that the annotated class
represents an attribute. Aside from this, the class looks and
functions like any other class.

Next, we use the attribute in a separate class as in Listing 4.
Since our attribute class definition exists in a different name-
space, we import it with a use statement. We then use the
attribute to annotate the class declaration, similarly to how
we would invoke a function but within #[and]. We pass
in two strings corresponding to the $uri and $description
constructor parameters of the attribute class defined in
Listing 4.

Lastly, we can programmatically locate and inspect
instances of attributes within the codebase. You can find an
example of this in Listing 5, which finds instances of our Link
attribute used to annotate classes and outputs a list of them.
This example is admittedly a bit contrived or incomplete, but
its purpose is to provide a simple conceptual illustration of
how code can analyze attributes through introspection.

Attributes are a subject with enough complexity that
they could probably have an entire article dedicated
solely to them. If you want a deeper dive into attributes
than this article can include, check out Brent Roose’s
blog post18 on them.

Union Types
Even if you don’t realize it, you’ve probably already

seen conceptual use of union types: before PHP 8, they
existed within the Type parameter of @param DocBlock
tags19; see Listing 6 for an example of what this looks like.

The difference between these union types and those
used in DocBlock tags is that PHP uses these for type

checking. Rather than leaving parameters untyped and then
manually checking their types using the instanceof operator
in a method or function body, you can use a union type to
accomplish the same thing much more concisely and readably.

18	 Brent Roose’s blog post: https://stitcher.io/blog/attributes-in-php-8
19	 @param DocBlock tags: https://phpa.me/phpdoc-params

Listing 3.

 1. <?php
 2.

 3. namespace MyNamespace\Attributes;
 4.

 5. #[Attribute]
 6. class Link
 7. {
 8. public function __construct(
 9. private string $uri,
10. private ?string $description = null
11.) {}
12.

13. public function getUri(): string
14. {
15. return $this->uri;
16. }
17.

18. public function getDescription(): ?string
19. {
20. return $this->description;
21. }
22. }

Listing 4.

 1. <?php
 2.

 3. namespace MyNamespace;
 4.

 5. use MyNamespace\Attributes\Link;
 6.

 7. #[Link('http://tools.ietf.org/html/rfc3986', '(the URI specification)')]
 8. class Uri
 9. {
10. /* ... */
11. }

Listing 5.

 1. <?php
 2.

 3. require_once __DIR__ . '/vendor/autoload.php';
 4.

 5. use MyAttributes\Namespace\Link;
 6.

 7. foreach (get_declared_classes() as $class) {
 8. $reflector = new \ReflectionClass($class);
 9. $attributes = $reflector->getAttributes(Link::class);
10. foreach ($attributes as $attribute) {
11. echo $class, ' - ',
12. $attribute->getUri(), ' - ',
13. $attribute->getDescription(), PHP_EOL;
14. }
15. }

Listing 6.

 1. <?php
 2.

 3. /**
 4. * @param array|\Traversable $list
 5. */
 6. public function doThingWithList($list)
 7. {
 8. /* ... */
 9. }

phparch.com
https://stitcher.io/blog/attributes-in-php-8
https://phpa.me/phpdoc-params

6 \ December 2020 \ www.phparch.com

PHP 8 Distilled

Union types denote that a variable may have a type from
a list of two or more possible types. |, commonly called the
pipe operator, represents the inclusive or bitwise operator20
in other contexts but is also used to separate individual types
within union types. For example, a variable that may hold an
integer or a floating-point number could have the union type
int|float.

Union types were first proposed21 and were rejected in 2015.
Ironically, a little over a year after this rejection, there was a
proposal for a single native union type that saw acceptance
and implementation in PHP 7.1: the Iterable pseudo-type22.
Iterable solved the issue illustrated in Listing 5 of explicitly
supporting both array and Traversable values without union
types by adding a pseudo-type to represent both of them.

2019 saw a second proposal23 for union types, this time an
accepted one. The implementation leaves a large amount of
functionality to potential future scope, such as support for
type aliasing. The proposal goes into more detail, but Listing 7
provides a summary of this feature’s restrictions in code.

This feature also impacts the reflection API. Specifically, it
adds a new subclass of ReflectionType, appropriately named
ReflectionUnionType. This class contains a getTypes() method
that returns an array of ReflectionType instances representing
the individual types constituting the relevant union type.

20	 bitwise operator: https://php.net/language.operators.bitwise
21	 first proposed: https://wiki.php.net/rfc/union_types
22	 Iterable pseudo-type: https://wiki.php.net/rfc/iterable
23	 second proposal: https://wiki.php.net/rfc/union_types_v2

Listing 7.

 1. <?php
 2.

 3. class Number {
 4. /* Union types work for properties... */
 5. private int|float $number;
 6.

 7. /* ... parameters ... */
 8. public function setNumber(int|float $number): void {
 9. $this->number = $number;
10. }
11.

12. /* ... and return types. */
13. public function getNumber(): int|float {
14. return $this->number;
15. }
16. }
17.

18. /* void cannot be part of a union type. */
19. public function doThing(): int|void; /* This doesn't work. */
20.

21. /* These do the same thing. */
22. public function doThing(): Number|null;
23. public function doThing(): ?Number;
24.

25. /* false functions as a subtype of boolean, true does not. */
26. public function doThing(): int|false; /* This works. */
27. public function doThing(): int|true; /* This doesn't work. */
28.

29. /* Redundant types aren't allowed. None of these work. */
30. public function doThing(): int|int; */
31. public function doThing(): bool|false;
32. use A as B;
33. public function doThing(): A|B;

What if there’s no API?
Web scraping is a time-honored
technique for collecting the information
you need from a web page. In this book,
you’ll learn the various tools and libraries
available in PHP to retrieve, parse, and
extract data from HTML.

Order Your Copy
http://phpa.me/web-scraping-2ed

phparch.com
https://php.net/language.operators.bitwise
https://wiki.php.net/rfc/union_types
https://wiki.php.net/rfc/iterable
https://wiki.php.net/rfc/union_types_v2

 www.phparch.com \ December 2020 \ 7

PHP 8 Distilled

Nullsafe Operator
If you need to access an object property or method that’s

nested within other objects in your hierarchy, it can require
verbose checks to ensure that the property or method return
value at each level of the call chain is not null.

The nullsafe operator24 ?-> effectively adds a null check
against the current value in the chain. If that value is null,
further evaluation of the entire expression stops and instead
resolves to null. See Listing 8 for an example of what this
looks like.

This feature does have some limitations. You can use it in
read contexts, but not write contexts. You also cannot return
the value of a nullsafe chain by reference25. See Listing 9 for
examples of each of these.

Throw Expressions
Before PHP 8, throwing an exception involved a statement

using the throw26 keyword. A proposal27 changed this situa-
tion to make throw an expression28 instead.

This change is significant because it makes throw usable
where it wasn’t before, such as inside arrow functions. See
Listing 10 for some examples.

Match Expressions
The switch statement29 is useful but can be difficult to get

right when dealing with many case statements or when some
of them omit a break or return statement.

24	 nullsafe operator: https://wiki.php.net/rfc/nullsafe_operator
25	 by reference: https://php.net/language.references.return
26	 throw: https://php.net/language.exceptions#example-289
27	 proposal: https://wiki.php.net/rfc/throw_expression
28	 expression: https://php.net/language.expressions
29	 switch statement: https://php.net/control-structures.switch

After being proposed30, declined, proposed again31, and
accepted, match expressions now provide an alternative. In
some ways, in their final form, match expressions became for
switch statements what arrow functions32 are to anonymous
functions. They add a syntax that replicates more verbose
code using older language constructs.

One significant difference between match expressions and
switch statements is that the former, being expressions, always
resolve to a value. Thus, we can use them in assignment state-
ments and anywhere else that an expression is allowed.

Another difference is that switch uses a loose comparison
(i.e. ==) while match uses a strict comparison that takes the
value type into account (i.e. ===).

30	 proposed: https://wiki.php.net/rfc/match_expression
31	 proposed again: https://wiki.php.net/rfc/match_expression_v2
32	 arrow functions: https://wiki.php.net/rfc/arrow_functions_v2

Listing 8.

 1. <?php
 2.

 3. /* Instead of this... */
 4. $country = null;
 5. if ($session !== null) {
 6. $user = $session->user;
 7. if ($user !== null) {
 8. $address = $user->getAddress();
 9. if ($address !== null) {
10. $country = $address->country;
11. }
12. }
13. }
14.

15. /* ... do this. */
16. $country = $session?->user?->getAddress()?->country;

Listing 9.

 1. <?php
 2.

 3. /* Nullsafe chains aren't usable for assignments or
 4. unsetting variables. */
 5. $foo?->bar->baz = 'baz';
 6. foreach ([1, 2, 3] as $foo?->bar->baz) {}
 7. unset($foo?->bar->baz);
 8. [$foo?->bar->baz] = 'baz';
 9.

10. /* Nullsafe chains are usable in contexts that read an
11. expression value. */
12. $foo = $a?->b();
13. if ($a?->b() !== null) {}
14. foreach ($a?->b() as $value) {}
15.

16. /* Returning a nullable chain by reference is
17. not supported. */
18. $x = &$foo?->bar;
19. function &return_by_ref($foo) {
20. return $foo?->bar;
21. }

Listing 10.

 1. <?php
 2.

 3. $callable = fn() => throw new Exception;
 4.

 5. $value = $nullableValue ?? throw new InvalidArgumentException;
 6.

 7. $value = $falsableValue ?: throw new InvalidArgumentException;
 8.

 9. $value = !empty($array) ? reset($array)
10. : throw new InvalidArgumentException;
11.

12. $condition && throw new Exception;
13.

14. $condition || throw new Exception;

phparch.com
https://wiki.php.net/rfc/nullsafe_operator
https://php.net/language.references.return
https://php.net/language.exceptions#example-289
https://wiki.php.net/rfc/throw_expression
https://php.net/language.expressions
https://php.net/control-structures.switch
https://wiki.php.net/rfc/match_expression
https://wiki.php.net/rfc/match_expression_v2
https://wiki.php.net/rfc/arrow_functions_v2

8 \ December 2020 \ www.phparch.com

PHP 8 Distilled

Finally, once a match expression finds
a match, it returns the corresponding
value. This behavior contrasts with a
case statement, which may allow execu-
tion to “fall through” if a break, return,
or other terminating statement isn’t
present.

See Listing 11 for an example of what
match expressions look like and how
they work compared to switch state-
ments.

The outer parts of a match expression
are like those of switch statements: they
begin with a keyword (match) followed

by a parenthesized expression and then
an open curly brace and end with a
closing curly brace.

Inside the braces, instead of case
statements, there are:

1.	 comma-delimited lists of one or
more expressions,

2.	 a rocket or double-arrow (=>),
3.	 the match expression value to

return if the parenthesized value
matches any values to the left of
the arrow,

4.	 and a trailing comma (,).
As with switch statements, the default

keyword specifies a fallback case when
the parenthesized expression doesn’t
match any preceding values. If a match
statement has no default case and
does not match a value, PHP throws an
UnhandledMatchError instance.

Due to the transition of throw from a
statement to an expression—described
in the previous section—a match state-
ment can resolve to a throw expression.

Static Return Type
The implementation of late static

binding33 (commonly appreciated as
LSB) in PHP 5.3 came at a time when
PHP lacked support for return type
declarations34, which came later in PHP
7.0. As a result, the static keyword was
usable in most reasonable contexts in
the original LSB implementation except
in return types. A proposal35 accepted
for PHP 8 fills this gap in the imple-
mentation.

See Listing 12 for an example of how
this works. A superclass Foo declares a
method get() with a static return type.
A Bar subclass of Foo inherits and does
not override this method. Later code
calls that method on an instance of Bar,
and the method’s return value type is an
instance of Bar rather than Foo, which
return type checking confirms.

33	 late static binding:
https://php.net/language.oop5.late-static-bindings
34	 return type declarations:
https://wiki.php.net/rfc/return_types
35	 A proposal:
https://wiki.php.net/rfc/static_return_type

JIT
The JIT36, or Just-In-Time Compiler,

was initially proposed as an experi-
mental addition to PHP 7.4 but was
instead delayed until in PHP 8. There’s
quite a bit to say about this feature, but
here’s what you need to know.

Several37 source38 have conducted
benchmarks and confirmed that many
web applications should see minor, if
any, performance improvement by
enabling this feature. It is significantly
more useful to CPU-bound applica-
tions: complex mathematical operations
such as calculating Mandelbrot frac-
tals39, long-running processes such as
applications running on ReactPHP40
and other similar asynchronous frame-
works, etc.

The RFC details related configuration
settings41 for the JIT; see this deep dive42
for explanations of commonly used
configurations.

Migrating
Now that you’ve seen some of the

shiny new features in PHP 8, let’s talk
about how you can ensure a successful
migration to it.

Tests
You’ve got automated tests, right?
If you do, try running them against

PHP 8. Assuming they have decent code
coverage, they should be your first line
of defense in uncovering the specific
changes in PHP 8 that will impact your
codebase.

36	 JIT: https://wiki.php.net/rfc/jit
37	 Several:
https://phpa.me/sticher-jit-real-life
38	 Sources:
https://droptica.com/blog/jit-compiler-php-8/
39	 Mandelbrot fractals:
https://en.wikipedia.org/wiki/Mandelbrot_set
40	 ReactPHP: https://reactphp.org
41	 related configuration settings:
https://wiki.php.net/rfc/jit#phpini_defaults
42	 this deep dive:
https://thephp.website/en/issue/php-8-jit/

Listing 11.

 1. <?php
 2.

 3. /* Instead of this... */
 4. switch ($x) {
 5. case 1:
 6. case 2:
 7. $result = 'foo';
 8. break;
 9. case 3:
10. case 4:
11. $result = 'bar';
12. break;
13. default:
14. $result = 'baz';
15. break;
16. }
17.

18. /* ... do this. */
19. $result = match ($x) {
20. 1, 2 => 'foo',
21. 3, 4 => 'bar',
22. default => 'baz',
23. };

Listing 12.

 1. <?php
 2.

 3. class Foo
 4. {
 5. public function get(): static
 6. {
 7. return new static;
 8. }
 9. }
10.

11. class Bar extends Foo { }
12.

13. $bar = new Bar;
14. $result = $bar->get();
15. /* $result is a type-checked
16. instance of Bar */

phparch.com
https://php.net/language.oop5.late-static-bindings
https://wiki.php.net/rfc/return_types
https://wiki.php.net/rfc/static_return_type
https://wiki.php.net/rfc/jit
https://phpa.me/sticher-jit-real-life
https://www.droptica.com/blog/jit-compiler-php-8/
https://en.wikipedia.org/wiki/Mandelbrot_set
https://reactphp.org
https://wiki.php.net/rfc/jit#phpini_defaults
https://thephp.website/en/issue/php-8-jit/

 www.phparch.com \ December 2020 \ 9

PHP 8 Distilled

If you don’t, well, this may be a good time to start writing
some43.

Static Analysis
The PHPCompatibity44 project leverages the PHP

CodeSniffer45 static analyzer to detect compatibility issues
between PHP versions. They are working on adding support
for PHP 846. I’m sure they would love some help!

You can also lean on other static analyzers like Psalm and
PHPStan. Bear in mind that these focus more on general code
quality than on PHP 8 compatibility specifically, so they may
not help as much in the latter regard.

Deprecations and Removals
Features deprecated in the 7.247, 7.348, and 7.449 branches of

PHP may not exist in PHP 8 or may face removal in a future
major version. These may clue you in to specific areas of
your codebase to inspect. Here are some specific deprecated
features that have been removed in PHP 8.

•	 Curly braces for offset access have been removed,
https://phpa.me/2VmyM9Q.

•	 image2wbmp() has been removed,
https://wiki.php.net/rfc/image2wbmp.

•	 png2wbmp() and jpeg2wbmp() have been removed,
https://wiki.php.net/rfc/deprecate-png-jpeg-2wbmp.

•	 INTL_IDNA_VARIANT_2003 has been removed,
https://phpa.me/3o8VrTn.

•	 Normalizer::NONE has been removed.
•	 ldap_sort(), ldap_control_paged_result(), and

ldap_control_paged_result_response() have been
removed.

•	 Several aliases for mbstring extension functions related
to regular expressions have been removed.

•	 pg_connect() syntax using multiple parameters instead
of a connection string is no longer supported.

•	 pg_lo_import() and pg_lo_export() signatures that
take the connection as the last argument are no longer
supported.

•	 AI_IDN_ALLOW_UNASSIGNED and
AI_IDN_USE_STD3_ASCII_RULES flags for
socket_addrinfo_lookup() have been removed.

•	 DES fallback for crypt() has been removed; unknown
salt formats will now cause crypt() to fail.

43	 start writing some: https://phpa.me/phpunit-writing-tests
44	 PHPCompatibity:
https://github.com/PHPCompatibility/PHPCompatibility
45	 PHP CodeSniffer: https://github.com/squizlabs/PHP_CodeSniffer
46	 adding support for PHP 8:
https://github.com/PHPCompatibility/PHPCompatibility/issues/809
47	 7.2: https://wiki.php.net/rfc/deprecations_php_7_2
48	 7.3: https://wiki.php.net/rfc/deprecations_php_7_3
49	 7.4: https://wiki.php.net/rfc/deprecations_php_7_4

•	 The$version parameter of curl_version() has been
removed.

One specific change to be aware of is that the XML-RPC
extension50 now lives in PECL51 rather than core; see the related
RFC52 for details. If you use this extension, you’ll need to install
it on your server using PECL as part of your upgrade process.

RFCs
The RFC process drives much of the feature development in

PHP these days. As such, RFCs are a great source of informa-
tion about new features and changes to the languages.

Below is a list of some specific RFCs you may want to
review involving backward-incompatible language changes.
Tests and PHPCompatibility will probably automate a lot
of the process of finding instances where these changes will
affect your codebase. That said, it still helps to be aware of
specific language changes yourself to recognize potential
culprits when you encounter related issues.

•	 Reclassifying engine warnings,
https://wiki.php.net/rfc/engine_warnings

•	 Consistent type errors for internal functions,
https://wiki.php.net/rfc/consistent_type_errors

•	 Ensure correct signatures of magic methods,
https://wiki.php.net/rfc/magic-methods-signature

•	 Always generate a fatal error for incompatible method
signatures, https://wiki.php.net/rfc/lsp_errors

•	 Change Default PDO Error Mode,
https://wiki.php.net/rfc/pdo_default_errmode

•	 Variable Syntax Tweaks,
https://wiki.php.net/rfc/variable_syntax_tweaks

•	 Saner numeric strings,
https://wiki.php.net/rfc/saner-numeric-strings

•	 Saner string to number comparisons,
https://wiki.php.net/rfc/string_to_number_comparison

•	 Locale-independent float to string cast,
https://phpa.me/3lovc9U

•	 Change the precedence of the concatenation operator,
https://wiki.php.net/rf/concatenation_precedence

•	 Stricter type checks for arithmetic/bitwise operators,
https://wiki.php.net/rfc/arithmetic_operator_type_checks

•	 Make sorting stable,
https://wiki.php.net/rfc/stable_sorting

Upgrade Notes
RFCs don’t cover all major changes to PHP. For a source

that does, look no further than the migration guide53. These
are as comprehensive and detailed as you’ll find, so combing

50	 XML-RPC extension: https://php.net/book.xmlrpc
51	 PECL: https://pecl.php.net
52	 related RFC: https://wiki.php.net/rfc/unbundle_xmlprc
53	 migration guide: https://php.net/en/migration80

phparch.com
https://phpa.me/2VmyM9Q
https://wiki.php.net/rfc/image2wbmp
https://wiki.php.net/rfc/deprecate-png-jpeg-2wbmp
https://phpa.me/3o8VrTn
https://phpa.me/phpunit-writing-tests
https://github.com/PHPCompatibility/PHPCompatibility
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/PHPCompatibility/PHPCompatibility/issues/809
https://wiki.php.net/rfc/deprecations_php_7_2
https://wiki.php.net/rfc/deprecations_php_7_3
https://wiki.php.net/rfc/deprecations_php_7_4
https://wiki.php.net/rfc/engine_warnings
https://wiki.php.net/rfc/consistent_type_errors
https://wiki.php.net/rfc/magic-methods-signature
https://wiki.php.net/rfc/lsp_errors
https://wiki.php.net/rfc/pdo_default_errmode
https://wiki.php.net/rfc/variable_syntax_tweaks
https://wiki.php.net/rfc/saner-numeric-strings
https://wiki.php.net/rfc/string_to_number_comparison
https://phpa.me/3lovc9U
https://wiki.php.net/rf/concatenation_precedence
https://wiki.php.net/rfc/arithmetic_operator_type_checks
https://wiki.php.net/rfc/stable_sorting
https://php.net/book.xmlrpc
https://pecl.php.net
https://wiki.php.net/rfc/unbundle_xmlprc
https://php.net/en/migration80

10 \ December 2020 \ www.phparch.com

PHP 8 Distilled

through it can be a bit tedious. As such, you’ll generally want
to rely more on methods mentioned in previous sections of
this article first before resorting to consulting this reference.

One example of a change that didn’t involve an RFC is the
deprecation of the Zip extension procedural API54. Another
is that many core extensions now return objects where before
they returned resources55. This change should be transparent
in most circumstances except those involving is_resource()
checks on the affected functions’ return values. Below is a list
of extensions affected by this change; the upgrade notes cover
the affected methods’ specifics.

•	 cURL, https://php.net/book.curl
•	 Enchant, https://php.net/book.enchant
•	 GD, https://php.net/book.image
•	 OpenSSL, https://php.net/book.openssl
•	 Shmop, https://php.net/book.shmop
•	 Sockets, https://php.net/book.sockets
•	 Semaphore, https://php.net/book.sem
•	 XML, https://php.net/book.xml
•	 XMLWriter, https://php.net/book.xmlwriter
•	 XML-RPC, https://php.net/book.xmlrpc
•	 Zlib, https://php.net/book.zlib

54	 deprecation of the Zip extension procedural API:
https://github.com/php/php-src/pull/5746
55	 now return objects where before they returned resources:
https://github.com/php/php-tasks/issues/6

Fin
This article informs you of the multitude of reasons to

upgrade and available tools to use as you start on your migra-
tion journey, and it calls out potential pitfalls to watch out for.
Go forth, happy upgrading, and enjoy PHP 8!

 Matthew Turland has been working with
PHP since 2002. He has been both an author
and technical editor for php[architect]
Magazine, spoken at multiple conferences,
and contributed to numerous PHP projects.
He is the author of php[architect]’s “Web
Scraping with PHP, 2nd Edition” and
co-author of SitePoint’s “PHP Master: Write
Cutting-Edge Code.” In his spare time, he
likes to bend PHP to his will to scrape web
pages and run bots. @elazar

Related Reading

•	 finally{}: What’s in PHP Eight? by Eli White, May 2020.
https://www.phparch.com/?p=13927

•	 Community Corner: PHP 8 Release Managers:
Interview with Sara Golemon and Gabriel Caruso, Part 1
by Eric Van Johnson, July 2020.
https://www.phparch.com/?p=14152

https://phpa.me/podcast-ep-44

Listen to Eric van Johnson, John
Congdon, and Oscar Merida discuss
practical uses for scalar type hints in PHP.
SOLID principles for programming, the
peculiarities of floating point math and
handling money calculations as a result,
and more.

Listen to Ep. 44:Listen to Ep. 44:

phparch.com
https://php.net/book.curl
https://php.net/book.enchant
https://php.net/book.image
https://php.net/book.openssl
https://php.net/book.shmop
https://php.net/book.sockets
https://php.net/book.sem
https://php.net/book.xml
https://php.net/book.xmlwriter
https://php.net/book.xmlrpc
https://php.net/book.zlib
https://github.com/php/php-src/pull/5746
https://github.com/php/php-tasks/issues/6
https://twitter.com/elazar
https://www.phparch.com/?p=13927
https://www.phparch.com/?p=14152

http://phpa.me/mag_subscribe

	PHP 8 Distilled
	Matthew Turland

	PHP 8 Bits and Git
	Osccar Merida

