
www.phparch.com

Newfangled ViewsNewfangled Views

PHP Puzzles:
Staircase Path

Education Station:
Working with PHP
Streams

The Workshop:
S3 Storage with MinIO

Sustainable PHP:
Database Playback
Testing

Security Corner:
Enforcing Subresource
Integrity

Community Corner:
Interview with Angie
Byron, Part One

finally{}:
Getting Through to
MyselfAL

SO
 IN

SI
D

E

Encore, Encore, Bravo, Bravo! Encore, Encore, Bravo, Bravo!
Combining Front End Development with Combining Front End Development with
PHP Using Symfony and VuePHP Using Symfony and Vue

Evolving to Modern Front-End Evolving to Modern Front-End
with ReactJSwith ReactJS

Six Things I Learned as a Lead Six Things I Learned as a Lead
DeveloperDeveloper

January 2021
Volume 20 - Issue 1

Oscar
Free Sample

a php[architect] anthology

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

https://phpa.me/devlead-book
http://phpa.me/grumpy-testing-book

Build a custom, secure, multilingual website with WordPress

WordPress is more than a blogging platform—it powers one-fifth of all
sites. Since its release, enthusiastic contributors have pushed the en-
velope to use it as a platform for building specialized social networks,
e-commerce storefronts, business sites, and more. This guide helps you
sort through the vast number of plugins available to find the ones that
work for you. You’ll also learn how to use CSS and PHP code to tailor
WordPress to your needs further.

Written by PHP professionals Peter MacIntyre and Sávio Resende, this
book distills their experience building online solutions for other Word-
Press site builders, developers, and designers to leverage and get up to
speed quickly.

Read a sample and purchase your copy at the link below.

Order Your Copy
http://phpa.me/wpdevdepth-book

https://phpa.me/devlead-book
http://phpa.me/wpdevdepth-book

16 \ January 2021 \ www.phparch.com

FEATURE

Six Things I Learned as a Lead Developer
Gabor “Mefi” Nadai

Being a Lead Developer is a fun, engaging, and responsible adventure. Becoming one is not
something that happens from one day to the next. It is something you grow into by raising your
voice, taking action, and responsibility. I’ve learned many things working as a Lead Developer.
Still, I’d like to share six lessons, which were the most important or sometimes the hardest for me.

From Contribution to
Coordination

First of all: this is not a deep-dive
tech article. I won’t say a word about
code writing, developer tools, frame-
works, performance tweaks, or security.
Don’t get me wrong: these are relatively
essential topics, especially for a lead
developer, but right now, I’d instead
like to share my thoughts around the
phrase: soft skills.

If you are a lead dev now or are soon
to be one, you’ll quickly realize that
your work’s real impact is no longer
only measured by writing code. At this
point, you’ve already proved your hard
skills. However, with your shiny new
title, people will expect different types
of contributions from you. Of course:
you still have to write code! You are still
making an impact on that, but it is not
your singular responsibility.

Becoming a lead developer also
means that your responsibility will
shift from an individual contributor
towards a collaboration coordinator.
You’re going to start making an impact
by having conversations with fellow
developers, project managers, product
owners, or sometimes even users and
non-technical folks.

You also will realize that many tech
leaders stated that most of the job is
done way before writing the actual
code when making software. User
stories, architectural plannings, API
specifications, whiteboard discussions,
data-driven decisions, monitoring,
alerting, etc., are all important pieces of
software engineering.

How To Improve Soft Skills?
To have meaningful conversations

and achieve results, you need soft skills.
And the funny thing is that these are
only soft in the name, but I find it pretty
hard to learn or practice them.

Soft skills or interpersonal skills are
the non-technical aspects of how you
are doing your work. These skills—like
communication, conflict resolution, or
time management—are just as neces-
sary as hard skills like writing code,
architectural designing, or creating
tests.

You can improve your soft skills by
learning and practicing new things
as well, but you don’t always have the
proper situations to exercise or even the
proper materials to learn. You can learn
how to develop a high traffic website by
tutorials and pet projects running in a
Docker container.

But imagine you’re going to have a
difficult conversation with someone.
You can rehearse it in front of the mirror,
and you should do it, too. But it’s way
more different from what it’s like with a
real human in front of you.

Have you ever worked with a horrible
boss? In my experience, that can happen
because many companies promote
people for a leadership position based
mostly only on hard skills and without
proper training. And sometimes it
happens because “hey, you are the most
senior member, so you are the leader
now, let’s lead”.

Half of all Americans have left a
job because of their manager, not the
company or job itself, as found in “The
State of the American Manager”1, a

1	 “The State of the American Manager”:
http://phpa.me/state-american-manager

broad study made by Gallup in 2015. So
a vast majority of people actually leave
managers, not jobs.

You manage things, you lead
people

This is my favorite quote, and it’s from
Grace Hopper. A woman in technology.
A woman in the US military. A woman
who created the fundamentals of
modern programming languages. She
believed that you manage things, and
you lead people. An excellent manager
I worked with once told me that to
become a good leader of people, I must
become a great manager of things first.
This was my very first experience in
learning soft skills.

What Does “Lead
Developer” Even Mean?

A title doesn’t matter, right? Still,
here’s just a few examples of how many
exist for this role:

Lead Programmer, Lead Software
Engineer, Team Lead, Develop-
ment Lead, Technical Lead, Lead
Software Developer, Software Engi-
neer Lead, Software Development
Manager, Software Manager, Lead
Application Developer, and so on.

A lead developer’s exact responsi-
bilities tend to vary from company to
company. According to Wikipedia2, in
general, they are responsible for the
underlying architecture for the software
program and for overseeing the work
performed by any other software engi-

2	 Wikipedia:
http://phpa.me/wikip-lead-programmer

phparch.com
http://phpa.me/state-american-manager
http://phpa.me/wikip-lead-programmer

 www.phparch.com \ January 2021 \ 17

Six Things I Learned as a Lead Developer

neers working on the project. They also
typically act as a mentor for new team
members or software developers begin-
ning their journey and all members of
the team.

The most important thing is that a
lead dev is responsible for both the
process of execution and the executed
job itself. The question is: how?

By Joining Forces
A bunch of people working together

is just a group, not a real team. Team-
work is pretty essential, and you have a
crucial role in achieving that.

Making a real team out of a group
of people

A group of people together is not a
team. A team is when people move,
work, think together, and therefore
they achieve results together. As a
lead developer, you have a key role in
defining and shaping the team’s identity.

Having a deep understanding of the
business model.

You don’t need to have a deep under-
standing of everything about your
project. But you need to have a deep
understanding of the core business
model. Both on a code-level and a busi-
ness-level perspective. Which is the
most business-critical component of
your project? How does it work? What
are the risks?

Speaking honestly, openly, and
respectfully.

This advice, of course, shouldn’t be
limited to engineers working in a lead
developer role. I don’t need to explain
the reasons deeply. I only have a ques-
tion for you: would you rather work
with someone who communicates
honestly or with someone who isn’t?

Talking in a way both stakeholders
and teammates can easily understand.

Software engineering is a business.
We create and maintain software to
deliver value to our users. To avoid
taking on technical debt and creating
silos, it is vital to understand one
fundamental idea: we’re here together
to achieve some kind of business
goals. To do that, you need to collabo-
rate and work together as a team with

stakeholders continuously. But this can
be tricky as your stakeholders most of
the time won’t be software engineers.

Making new connections.
Networking and making new

connections is not the easiest thing to
do. However, if you continuously grow
your network, you can discuss ongoing
topics, challenges with others working
in the same area. And you never know:
you might find your new team members
over beers or coffee.

By Motivating People
To be honest, I believe that getting

your paycheck is not a motivational
source, more like a hygiene factor. It’s
a mandatory thing like having water
in the office. In the long-run, you can’t
motivate anyone with money. Moti-
vation is something coming from the
inside, and if someone has this internal
motivation, you can boost that and
build on that in many ways.

Being compassionate about team
health.

A team health check can be a great
start and great help in being on the
same page and having actual data about
how your team’s health and mood
change.

Understanding what motivates
people.

Moving Motivators can be a great
start. For this, you mostly need to
have a valuable conversation with your
teammates and understanding what
excites them.

Knowing when to go or when to slow.
Sometimes you need to push the

team to meet an important goal, reach a
deadline, etc. But sometimes, you need
to stop and evaluate your current situ-
ation.

Leading by example in many ways.
In any leadership role, you will be

a role model. Do everything in a way
that people around you are watching
what and how you are doing. A small
example: it’s not cool to always late
from meetings, but in a leadership role
as a role model, it’s an absolute red-flag
to always late from meetings.

By Having A Plan
Of course, your plan will change a lot,

but that’s not a problem as everything is
always changing.

•	 Knowing what’s next.
•	 Having a long-term vision for the

codebase.
•	 Knowing why and how to get

there.
•	 Being prepared for both the best

and the worst-case scenarios.

By Keeping Things Tidy
You are kind of like the glue which

connects people as a team. But you are
also a hammer that strikes on obstacles
cruelly.

Moving obstacles away before the
team gets there.

I think a lead developer should think
in advance and plan what’s coming
for the team. By having an eye on the
discovery and the strategy, you can
eliminate blockers for your teams,
which results in speeding up delivery.

Maintaining good relations with
colleagues outside the team.

This includes engineers and lead
developers from other teams, but also
people from marketing, product, sales,
etc. Doing so helps you understand
what’s going on in the company and the
challenges other teams have.

Saying no to spooky user stories.
If something is not ready to work on,

you have a great responsibility to raise
your voice and, moreover, help anyone
make a better user story out of it.

And saying no for unacceptable
deadlines.

Again, you have a responsibility in this.
Your team should not be committed to
something they obviously can’t fulfill.

By Helping Others To Grow
One of your many responsibilities

is making seniors out of juniors and
leaving no-one behind.

Helping juniors on their way to be
seniors.

You can help them with material
things like books, training, meetups,

phparch.com

a php[architect] anthology

Order Your Copy
http://phpa.me/fizzbuzz-book

Tackle Any Coding
Challenge With Confidence

Companies routinely incorporate coding
challenges when screening and hiring new
developers. This book teaches the skills
and mental processes these challenges
target. You won’t just learn “how to learn,”
you’ll learn how to think like a comput-
er. These principles are the bedrock of
computing and have withstood the test of
time.

Coding challenges are problematic but
routinely used to screen candidates for
software development jobs. This book
discusses the historical roots of why they
select for a specific kind of programmer.
If your next interview includes a coding
exercise, this book can help you prepare.

Available in Print, Kindle Unlimited,
and Kindle Lending Library

 www.phparch.com \ January 2021 \ 19

Six Things I Learned as a Lead Developer

and conferences. But you can also help
them, for example, with pairing, mob
coding, and deep-dive code review
sessions.

Helping POs, PMs, or any non-tech-
nical members of the team.

It is useful to take an ambassador role
to help non-technical team members
understand technical aspects, like why
something is more complicated than it
appears to.

Making decisions together with
stakeholders.

You can go in this direction and have
an empowering mindset in your teams.
Or you can go the other way around,
and you will feel that your group
receives orders from “above.”

Answering questions.
Answer questions both from inside

and from outside of your team.

The Six Lessons
Here are the six most challenging and

most important lessons I learned along
the way

1. I Am The Boss… Of My Own
Calendar

So you are a lead developer. Do you
know what everyone wants from you?

Your time.
Do you know what is your most valu-

able resource of which you have the least?
Your time.
So yes, it is your time, so you are the

one who decides when to do things.
Certainly, there are deadlines you can
plan with, but on-call duties or inci-
dents could make it hard to manage
your time. And there are those “Hey,
you’ve got five minutes?” non-meetings
fragmenting your time.

It is important to have slots for
focusing on problems and working
without interruptions. You need at least
two hours of working without any inter-
ruption considered as “focused time”.
You need a decent amount of focused
time. It is not easy, but I’ve learned a few
habits along the way that can help you
achieve this.

Assess Your Current Situation
It starts with this step: look at your

calendar and try to measure a few
weeks. Look for both the “good weeks”
and “bad weeks,” look for interruptions
making your day or week bad.

Try to answer these questions:
1.	 How much focused time do you

need to complete your tasks on
time? In my experience, at least
40% of my time should be for
focused work.

2.	 Are there any recurring meetings
you shouldn’t participate in?

•	 Can you be an optional guest?
It might save you time.

3.	 How many fragmented time slots
do you have?

•	 Fragmented time is when you
only have 30 or 40 minutes
between two events.

•	 Rescheduling events could help
you avoid this.

•	 Also, you can have a rule like
mornings for meetings, after-
noons for focused work.

4.	 What are the most time-killing
activities?

•	 Is there anything you can dele-
gate to someone else?

•	 Is there anything you can
automate?

This is a worthwhile first step. Even
with this, you might have a more prac-
tical schedule. If you have the results,
you can start planning your day.

Daily Planning
I do this thing each day.
At the end of the day:

•	 I check out my calendar and
update it.

•	 If there were any over-run meet-
ings, I update the invite.

•	 If there any meeting that initially
wasn’t in my calendar, I create an
event to track it.

•	 I make a list of the “5 minutes
questions” I’ve answered. I might
create a wiki page which could help
others to find some answer later.

•	 I check out my next day. Do I have
to prepare for anything?

At the beginning of the day:

•	 I check out my day, looking for
any changes since the last day.

•	 I prepare for any upcoming meet-
ings, gathering info, taking notes
for questions, etc.

You can start practicing these simple
habits today. After a week, you should
begin to feel that you are the boss of
your own time. If you’ve successfully
built these things into your days, you
can go to the next level and start plan-
ning your weeks.

Weekly Planning
The purpose of doing weekly plan-

ning is to have some kind of agenda
for your week answering the question:
what will I deliver this week?

For me, Fridays work the best for this.
After lunch, I create a new document
for my next week, and I spend at least
one hour to figure out “what can I finish
now?” and “what should I finish next
week?”

Review all the meeting notes:

•	 Is there an action item assigned
to me?

•	 If I can do it quickly, I complete it.
•	 If I can’t, I schedule it for next

week.
Checking out Slack and email:

•	 Do I have action items?
•	 Do I have snoozed reminders?
•	 Have I starred anything to bother

with it later?
•	 The same goes here as well: I do it,

or I schedule it for next week.
Checking out my to-do list:

•	 I write down lots of things to
remember during a week

•	 Some items go to meeting notes;
some just get archived

•	 Some are actual action items that
I either do or schedule for next
week

phparch.com

20 \ January 2021 \ www.phparch.com

Six Things I Learned as a Lead Developer

Checking out my calendar

•	 I lock down all two hours or more
free space as “Focused time—
please don’t disturb.”

•	 If I don’t have enough focused
time for the week, I try to resched-
ule events

•	 I check out all meeting invites to
see if I have to prepare for some-
thing

•	 I send out invites if I need to
discuss something

Of course, I am somewhat flexible
with these booked focused time events,
but it helps me avoid fragmented time.

Things are always changing, so do the
calendar events, but these habits have
helped me have well-organized weeks.

2. A Team’s Always Smarter
Than an Individual

This might be a bold statement, but
I’ve experienced this many times in my
career. At the end of the day, a team
always makes a better decision than an
individual one.

There are many books, blog posts,
and workshops about the importance
of teamwork, but as you are responsible

for your team, it is your duty to involve
everyone in the decision-making process.

Primarily involve those who recently
joined the team, any junior or mid-level
member of your team, or someone not
experienced with the topic. Now is an
excellent opportunity:

•	 for them to learn,
•	 for you to empower them,
•	 for the team to grow together.
Ask them, involve them, trust them.

Leave no-one behind.
There’s also an important lesson

here if you became a lead developer
because you were the senior or had the
most experience or domain knowledge
within the team. In this case, you need
to learn how to let go of your solutions.
Sure, you need to make a final decision
many times, but otherwise, you need
to support and encourage other team
members.

3. Saying No Without Hard
Feelings

For me, it is so easy to be a yes-man.
I like my work, I like challenges, and I
want to prove I’m good at the job. These
are quite essential things in achieving
any form of success.

So saying no was a hard lesson for me.
Because I’ve always felt that by saying
no, I let people down, or if I’m not as
impactful, maybe I’d be less likable.

You don’t need to run circles around
this one as I did. I’m here to tell you:
sometimes you must say no. Saying no
doesn’t mean you let people down. And
you are going to be as much or even
more impactful and likable.

Say no to:

•	 Impossible deadlines. If it’s impos-
sible, this can’t—or shouldn’t—get
you into any trouble or more
trouble than a missed deadline.

•	 Things you don’t believe in. A
workplace often isn’t a place for
saying no, but if there’s something
fundamentally against your values,
you should raise your concerns.

•	 Things that would hurt your team,
your product, or your users. I
think this goes without saying, but
your team, your product, and your
users should be the most import-
ant folks for you to represent.

•	 Gossip. Everyone likes to gossip,
even me. If it’s harmless, I do
nothing. Otherwise, I put a large
amount of effort to stop it.

You’re the Team Lead—Now What?

Whether you’re a seasoned lead developer or have just
been “promoted” to the role, this collection can help
you nurture an expert programming team within
your organization.

After reading this book, you’ll understand what pro-
cesses work for managing the tasks needed to turn a
new feature or bug into deployable code.

Order Your Copy
http://phpa.me/devlead-book

phparch.com

 www.phparch.com \ January 2021 \ 21

Six Things I Learned as a Lead Developer

After saying no, it is a good practice
to explain the reasoning as well. It is
also totally cool if you don’t know the
answer right away and say, “I don’t
know, let me check that” or “I’m not
sure, let me think about that” if you’d
like to sleep on it.

Trust me, these are simple rules, but
when you are in the middle of a conver-
sation, it is damn hard to say no. But you
can start this one in small steps as well.

4. I Work For My Team and My
Users

And I definitely don’t work for my boss.
So many people do tasks because

“their boss told them to do so.” Some-
times that’s reasonably good because
multiple roles exist for this purpose.
You have to work with many people
around a company who’s job is exactly
to tell you what to do: seniors, managers,
architects, even the CTO.

But you should remember: they
must involve you as well in the deci-
sion-making as you are the one
responsible for your team. That’s why
you are a lead developer. It is not your
job to satisfy your boss, though. If
you ever feel you have to do stupid
things for your boss of any kind, give
honest feedback and if things are not
changing, quit. I’m serious. Just quit.
Plenty of great companies are looking
for experienced engineers like you are,
so you don’t have to waste your time on
rubbish things.

Always keep in mind and speak for
what’s the best for your team, what’s
best for the product you are building,
and what’s best for the users who will
use it and who are going to pay your
bills by the end of the day.

5. Prepare For The Fickle Finger
Of Fate

I know it’s hard not to fix some things:
Legacy code or technical debt. Code is
just hard to work with. There are so
many of these.

But there’s always an important ques-
tion to answer here: do you need to fix it?

Is this something that is preventing
the success of your team in any way?

Is this something that could break and
cause incidents or on-call work? Is this
something that would make users have
a hard time using your product?

If there’s a yes to any of these ques-
tions, you should work with your team
on fixing it. And if the answer is no to
all of those questions, you shouldn’t fix
it but plan to do so later.

It could be a good practice to work on
those things before, for example, adding
a new feature that could affect any risky
areas. But if something is working right
now and isn’t causing any more trouble
than hurting your eyes, it should not be
your mission to fix it.

Prepare for both good and bad things
to happen, but don’t let these things
prevent you from moving forward.

6. I Must Be Open
Well, first of all: be open to learning

from your mistakes. It is absolutely OK
to make mistakes, as long as you learn
from them and grow from their lessons.
Don’t be afraid to break things. That’s
part of your job both as a developer and
as a lead developer.

Also, please be open in general. Open
to new solutions. Open for upcoming
changes. Open to ideas. Open to discus-
sions. And most of all: open to people.

Being open and diverse is not a fancy
Silicon Valley startup thing to do. It is
the way everyone should do their job.

It doesn’t matter whether you work
with a woman or a man. With an older
or a younger colleague of yours. With
someone who speaks your language or
with someone who doesn’t. And so on.

The only thing matters are someone’s
knowledge, passion, and willingness to
do and learn. You must only evaluate
their performance by these values and
the work they’ve done, nothing else.

Key Takeaways
Wrapping up all the things above:

•	 Don’t ignore soft skills. Those are
important and hard to learn.

•	 You should help your team create
value for your users.

•	 Start it in small as it is easier to
win one step at a time.

•	 Fixing everything should not be
your mission.

•	 Time is always really the most
valuable thing.

•	 Sometimes, you must say no.
•	 You must be open.
And for a final thought: don’t be

afraid of mistakes. Remember what
Theodore Roosevelt, the 26th President
of the United States, said:

The only one who makes no
mistakes is the one who never does
anything.

 Gabor Nadai, but you can call him Mefi. Engineering
Manager, currently on an intergalactic mission working with
a talented group of engineers and managers at Bitrise. Former
VP of Engineering at ingatlan.com, Hungary’s market leading
real estate listing portal. His mission is building awesome
communities and teams creating great software which truly
helps people. @mefiblogger

Related Reading

•	 Defining Project Metrics by Terri Morgan, September 2020.
http://phpa.me/defining-project-metrics

•	 Up to My Eyeballs in Technical Debt! by Steve Grunwell, May 2018.
https://phpa.me/grunwell-technical-debt

•	 The Dev Lead Trenches: Simple Project Management by Chris Tankersley,
November 2017. https://phparch.com/magazine/2017-2/november/

phparch.com
https://twitter.com/mefiblogger
http://phpa.me/defining-project-metrics
https://phpa.me/grunwell-technical-debt
https://phparch.com/magazine/2017-2/november/

http://phpa.me/mag_subscribe

	Six Things I Learned as a Lead Developer
	Gabor “Mefi” Nadai

