
www.phparch.com

Lambda Lambda
PHPPHP

PHP Puzzles:
Hashtag Creation

The Workshop:
Using Sail to Understand
Local Development with
Docker

Education Station:
APIs of the World

Security Corner:
Cooking with Credential

Community Corner:
Interview with Matthew
Weier O’Phinney

Sustainable PHP:
When the World Shifts

finally:
When the Wrong
Answer is RightAL

SO
 IN

SI
D

E

The New LAMP The New LAMP
Stack is ServerlessStack is Serverless

Refactoring— Refactoring—
Does This Code Spark Joy?Does This Code Spark Joy?

Fiendish Functions—Fiendish Functions—
Filtering Fact Filtering Fact
From FictionFrom Fiction

March 2021
Volume 20 - Issue 3

Oscar
Free Sample

a php[architect] guide

Order Your Copy
phpa.me/beyond-laravel

Harness the power of the Laravel
ecosystem to bring your idea to life.
In this book, Michael Akopov shares his experiences
creating software solutions that can not only survive
but thrive. If you’re looking to take a project to the
next level, he’ll show you how to put it together
without burning out. Includes a foreword by Taylor
Otwell, the creator of Laravel.

Available in Print+Digital and Digital Editions.

http://phpa.me/beyond-laravel
http://phpa.me/grumpy-testing-book

16 \ March 2021 \ www.phparch.com

FEATURE

Fiendish Functions
—Filtering Fact From Fiction

Camilo Payan

Functional programming is a paradigm that has gained in popularity recently
with the rise of several new functional programming languages and integration of
new features in existing languages. All the same, there are many concerns about
functional programming in the developer community. Is functional programming
useful for the PHP developer? Will it add complexity to my codebase? This article
will respond to some of these misconceptions.

To get the most out of this article, I hope you will take stock
of what you currently know about functional programming,
but complete knowledge isn’t necessary. Also, I assume the
reader has some knowledge of object-oriented programming
such as familiarity with SOLID design principles, and knowl-
edge of PHP functionality such as callables, anonymous
functions, and the array methods that take callables, like
array_map()1, array_filter()2, and array_reduce()3. With all
that said, let’s dive in with the first myth I’d like to dispel.

Functional Programming is the Same as
Imperative Programming

The first myth about functional programming is that it
is an older pre-object-oriented programming style, where
instructions are written one after the other as in a WordPress
template. This myth, unfortunately, persists due to a lack of
knowledge of the different programming paradigms that exist.
Without that knowledge, every paradigm is usually organized
in a coder’s mind as object-oriented or not object-oriented.

This myth is especially true in the PHP community with
good reason. Those who worked in PHP in the early 2000s
(and before) didn’t have the object-oriented features—inter-
faces, namespaces, and abstract classes, to name a few—that
have organized PHP 5+ projects since, and that led to many
projects bogged down in spaghetti code without clear borders
between responsibilities. That history leads to the clear delin-
eation of coders’ minds between the object-oriented approach
and the “bad old way.”

However, functional programming is not a return to that
old way of doing things. Functional programming takes as
its center not the description of objects and their behaviors,
but the description of functions and their inputs and outputs.

1	 array_map(): https://php.net/array_map
2	 array_filter(): https://php.net/array_filter
3	 array_reduce(): https://php.net/array_reduce

Then those functions are applied and composed to create our
system.

The main issue that crops up with code from before PHP 5’s
release is that it lacked organization, focus, and clarity. Func-
tional programming has an organizing principle that gives it
focus and rules that make them explicit.

Functions in functional programming are fundamentally
based on functions in mathematics. That is, something like
f(x) where some math is done to a given input x, and the same
result is returned every time for the same input. This goal in
functional programming is known as writing pure functions.
A pure function is any function where, given the same input,
the same output is returned.

You might already be able to imagine some of the rami-
fications. Pure functions are necessarily protected from side
effects since any reliance on a state outside the function
would change the output—or they wouldn’t be pure functions.
Without side effects, the inputs and outputs themselves must
be immutable, that is that the function cannot change the
input since this would be a side effect.

For example, if we had a function that took in a date and
returned the next date, we might implement something like
Listing 1.

Listing 1.

 1. function nextDay(\DateTime $date) {
 2. $interval = new DateInterval('P1D');
 3. // Mutate the given date
 4. return $date->add($interval);
 5. }
 6.

 7. $date = new DateTime('August 12, 1791');
 8. nextDay($date);
 9. echo $date->format('F j, Y'); // August 13, 1791

Sam
ple

phparch.com
https://php.net/array_map
https://php.net/array_filter
https://php.net/array_reduce

 www.phparch.com \ March 2021 \ 17

Fiendish Functions—Filtering Fact From Fiction

However, this example mutates the input since PHP passes
objects by reference, which could have ramifications in what-
ever code was using that date object in the first place. If we
were to ensure that this function was pure, we would imple-
ment it as in Listing 2.

Here we create a new DateTime object and return the new
date. The input is left intact, and the calling code doesn’t need
to worry about handling a side effect. Actually, PHP has a
set of immutable Date objects that we could use instead to
implement as in Listing 3.

Functional Programming is Impossible
Without a Functional Language

Functional programming is only possible in a functional
programming language. Those that discard functional
programming in PHP on these grounds will point out that
PHP is not a functional language like Haskell or OCaml.
Without the foundation of a functional language, the para-
digm is doomed to failure in a PHP context. This myth is
believable because it has a grain of truth! Functional program-
ming and its theoretical background in the lambda calculus
(which we will not get into in this article) are the foundation
of popular functional languages. At the same time, PHP will
allow you to mix in bits of the functional programming para-
digm as you like.

The issue here is one of definition. Every programming
paradigm has vague definitions and fuzzy borders between
them. If you ask five developers to define object-oriented
programming, you’ll get six answers, seven book recommen-
dations, and one intense desire to move to the woods. The
same holds true for functional programming. There isn’t a
strong definition.

We need to take a very loose definition for functional
programming in PHP, which boils down to support for
first-class lambda functions. We need functions that can be
defined, passed around, applied, and composed at will.

“First class functions” refers to the ability to assign a function
to a variable. This language feature supports the requirement
that we be able to pass around a function. It has had first-class
support in PHP since 2009 with the release of PHP 5.3.

// Assign a function to a variable
// This creates a Closure, assigned to $sum
$sum = function($a, $b) {
 return $a + $b;
};

// Call the function, using the variable name
echo $sum(5, 4); // 9

A “lambda function” is an anonymous function, which is to
say that your function can be defined and used in your code
without being given a name. This fulfills the requirement that
functions can be defined anywhere in your code and is most

commonly used in PHP as callbacks. Callbacks predated PHP
5.3 in some ways, such as call_user_func() using named
functions. However, they were formalized further as a type in
2009 with 5.3. This also points to the ability to pass a function
into another function. Similarly, we can use lambda functions
to return a function from a function. See Listing 4.

While PHP is not a functional programming language, it
is a general-purpose language that now supports multiple
programming paradigms. We can use and apply functional
programming principles to our code while using best prac-
tices to decide when to use which paradigm, much like we
use experience and best practices to determine when to apply
a design pattern.

Listing 3.

 1. function nextDay(DateTimeImmutable $date) {
 2. $interval = new DateInterval('P1D');
 3. // DateTimeImmutable makes a new object.
 4. return $date->add($interval);
 5. }
 6.

 7. $date = new DateTimeImmutable('August 12, 1791');
 8. $next = nextDay($date);
 9. echo $date->format('F j, Y'); // August 13, 1791
10. echo $next->format('F j, Y'); // August 14, 1791

Listing 4.

 1. $names = ["John", "James"];
 2.

 3. array_map(
 4. // Anonymous Lambda function passed in as parameter.
 5. function ($n) {
 6. echo "Hello; $n";
 7. },
 8. $names
 9.);

Listing 2.

 1. <?php
 2. function nextDay(\DateTime $date) {
 3. $interval = new DateInterval('P1D');
 4. $nextDay = clone $date;
 5. // Mutate the given date
 6. return $nextDay->add($interval);
 7. }
 8.

 9. $date = new DateTime('August 12, 1791');
10. $next = nextDay($date);
11. echo $date->format('F j, Y'); // August 13, 1791
12. echo $next->format('F j, Y'); // August 14, 1791

Sam
ple

phparch.com

18 \ March 2021 \ www.phparch.com

Fiendish Functions—Filtering Fact From Fiction

Functional Programming Will Ruin My
Object-Oriented Codebase

Since PHP 5, there has been a consistent push toward
language features in PHP that support the best practices
of object-oriented programming. It has led to many solid
advances in PHP codebase organization and greater ease of
library development. The PHP Framework Interoperability
Group has worked to codify best practices in PHP while
also supporting the various object-oriented frameworks like
Symfony, Laravel, and Laminas.

When considering the functional programming paradigm’s
advantages, a developer might think that they can’t combine
the two. That choosing an object-oriented approach means
that functional techniques are off the table. Since the world
of PHP frameworks is entirely object-oriented, functional
programming is a toy idea that we can’t use in existing
projects. Nothing could be further than the truth. The two
approaches to thinking about and writing code can supple-
ment and improve each other.

Some of the most influential ideas around object-oriented
programming today are the SOLID design principles. The
SOLID design principles are a set of code smells that make
object-oriented code challenging to work with and change
over time. They are the single responsibility principle, the
open/close principle, the Liskov substitution principle, the
interface segregation principle, and the dependency inver-
sion principle. Let’s go through these and see how a functional
approach might help us accomplish their goals.

The Single Responsibility Principle
The idea of the single responsibility principle is that each

class we write should have only one reason to change. If a
class has more than one responsibility, that change becomes
more burdensome. A change to one of your class’s responsi-
bilities could affect your class’s other responsibilities, making
your change more likely to introduce bugs.

Thinking in terms of lambda functions helps the single
responsibility principle at the method/function level. Using
lambda functions, we can break our code down into its
smallest parts while pushing secondary responsibilities out to
other objects or methods.

Let’s look at some code (Listing 5) that finds the largest
product in a series of digits.

We can see that there are several responsibilities mixed here.
I build the array of factors from the given series of digits. Then
I get the products of each of those factors. These can all be
turned into individual functions, as you can see in Listing 6.

Now we’ve refactored a bit, and each of our refactored
functions does only one thing. This solution makes extensive
use of PHP’s array functions, which are probably the most
common use cases you’ll find for a functional programming
mindset.

The Open/Closed Principle
The open/closed principle in object-oriented programming

dictates that objects should be open for extension but closed
for modification. The idea here is to help code changes by
avoiding the brittleness that results from codebases where
classes depend directly on other concrete classes, so a modi-
fication in a class to finish a feature request can result in
unforeseen bugs in another one.

In practice, developers take this to mean that classes should
depend on abstract classes or interfaces. Instead of needing
new implementation details in your class for each concrete
class that is supported, your class would rely on an abstraction.
Then it could take in concrete classes that extend that abstrac-
tion or implement that interface without needing to change.
In this way, you extend your class’s functionality without
needing to be modified to support new feature requirements.
However, if we expand our thinking on the open/closed prin-
ciple to include functional programming concepts, we can see
other ways to apply the open/closed principle.

Higher-order functions, that is, functions that can take
other functions as inputs or return functions as outputs, are
also open for extension while being closed for modification.

Listing 6.

 1. function largestProduct(string $digits, int $len) {
 2. return max(array_map(
 3. 'getProduct',
 4. getFactors($digits, $len)
 5.));
 6. }
 7.

 8. function getFactors(string $digits, int $len) {
 9. return array_map(
10. fn ($i) => substr($digits, $i, $len),
11. range(0, strlen($digits) - $len)
12.);
13. }
14.

15. function getProduct(string $factors) {
16. return array_product(str_split($factors));
17. }

Listing 5.

 1. function largestProduct(string $digits, int $len) {
 2. $factorsArray = [];
 3.

 4. for ($i = 0; $i <= strlen($digits) - $len; $i++) {
 5. $factorsArray[] = substr($digits, $i, $len);
 6. }
 7.

 8. $productsArray = [];
 9. foreach ($factorsArray as $factors) {
10. $productsArray[] = array_product(str_split($factors));
11. }
12.

13. return max($productsArray);
14. }

Sam
ple

phparch.com

Build a custom, secure, multilingual website with WordPress

WordPress is more than a blogging platform—it powers one-fifth
of all sites. Since its release, enthusiastic contributors have pushed
the envelope to use it as a platform for building specialized social
networks, e-commerce storefronts, business sites, and more. This guide
helps you sort through the vast number of plugins available to find the
ones that work for you. You’ll also learn how to use CSS and PHP code
to tailor WordPress to your needs further.

Written by PHP professionals Peter MacIntyre and Sávio Resende,
this book distills their experience building online solutions for other
WordPress site builders, developers, and designers to leverage and get
up to speed quickly.

Read a sample and purchase your copy at the link below.

Order Your Copy
http://phpa.me/wpdevdepth-book

20 \ March 2021 \ www.phparch.com

Fiendish Functions—Filtering Fact From Fiction

Some of the best examples of this are already native PHP
functions. The suite of array functions that take a function
callback is all higher-order functions whose functionality is
extended by the function you pass in. At the same time, you
also are not able to modify the inner workings of that function.

Immutable objects are, by definition, completely closed to
modification after their creation. Their internal state can’t be
changed, and any method that does make a “change” actu-
ally creates a new immutable object. This is pretty far afield
from the original definition of the open/closed principle,
or even its interpretation as a dependence on abstraction.
Still, immutability maintains an essential role in functional
programming. Immutability helps support the creation of
pure functions that don’t have side effects because immutable
objects protect the programmer from creating side effects
in the objects they’re using. In this way, we could see it as a
natural alignment of goals under the open/closed principle.

The Liskov Substitution Principle
The Liskov substitution principle means that child classes

should maintain the behavior of their parent classes. One of
the byproducts of the Liskov substitution principle in current
best practices is to avoid the inheritance hierarchies that this
principle is meant to help you navigate entirely. You can see
this in the proliferation of dependency injection libraries and
the frameworks that use them.

Inheritance isn’t a part of functional programming. As
stated earlier, functional programming is based on func-
tion composition: building behavior by combining other
behaviors/functions. This is remarkably similar to the idea
of dependency injection that programmers have turned to
resolve the LSP’s demand.

Dependency Inversion Principle
The dependency inversion principle states that abstractions

should not depend on details, and details should not depend
on abstractions. In the object-oriented paradigm, we take
this to mean that classes should separate high-level business
logic from glue code by depending on interfaces or contracts
instead of on concrete classes.

Again, we can look to higher-order functions, which can
take a function as input and apply it. In this case, the interface
is the function itself, and the implementation details are in
the function. This is possible with first-class functions. The
suite of array_* functions in the PHP standard library again
shows a concrete example, where the implementation details
of your filter or map function are left to you. In contrast, the
higher-level functionality of applying that function across an
array is contained in the standard library function.

How Can Functional Programming Fit Into
My Object-Oriented Codebase?

So what does functional programming look like in action
in a codebase? Especially in an object-oriented codebase? In
a different environment, like the Java virtual machine or the
.NET ecosystem, a programmer could drop into a functional
language like Scala or F# to implement the parts of their code
influenced by functional programming thinking. However,
we need a different strategy in PHP since we have features
that support functional programming but not a specific tool
to do so.

I find inspiration in a concept called “imperative shell, func-
tional core,” which I first learned of Gary Bernhardt of “Destroy
All Software.” There, he describes an approach where the core
business logic is written in a functional style. This plan means
objects are immutable and behavior is written as pure func-
tions, which take some input and return a new object. These
objects are then glued together by a thin shell of imperative
code which would interact with the outside world, including
user input, APIs, or whatever other concerns you have.

The project he uses to illustrate this is a small Ruby-based
Twitter client. What would this look like in a current PHP
framework like Laravel? Laravel controller and request
classes could hold the imperative shell, while the business
logic resides in plain PHP objects.

One side effect of writing objects in a functional style is
the positive effect on testing. Since your core business logic
is now defined in pure functions, they are testable with unit
tests, based only on the inputs and outputs, with little setup
required. This could even open up your codebase to using
mathematical testing tools such as quickcheck4, though I
have not verified this.

User Interface Programming
User interface programming in the functional program-

ming paradigm takes the form of functional reactive
programming (FRP). The idea behind FRP is to move toward
a completely event-based model and allowing a user interface
to use immutable objects and pure functions to change the UI.
We should contrast this to the imperative model of UI devel-
opment, which mainly takes the form of maintaining state
and creating behavior based on that state. FRP requires an
event-driven runtime, such as that provided by the ReactPHP
library. You can’t react to events without events, after all!

If your UI is written in Javascript as a single-page app, more
options are open to you, such as RxJS. There are even ways to
include FRP methods in React and Vue applications.

Concluding Remarks
Let’s review some of the myths that surround functional

programming and their responses. Functional programming

4	 quickcheck: https://en.wikipedia.org/wiki/QuickCheck

Sam
ple

phparch.com
https://en.wikipedia.org/wiki/QuickCheck

 www.phparch.com \ March 2021 \ 21

Fiendish Functions—Filtering Fact From Fiction

is not the same as imperative program-
ming. Functional programming is
structured, just like object-oriented
programming, but aims for different
philosophical underpinnings. The foun-
dations of functional programming
include immutability, pure functions,
and the composability of those pure
functions.

You do not need to be working in a
functional programming language to
benefit from a functional programming
paradigm. While a language like OCaml
or Haskell may force you into functional
programming, PHP has the language
features to support you. First-class
functions, that is, functions that can be
assigned to variables and passed around,
are available in PHP. Lambda functions
are anonymous, nameless functions
and are also available in PHP. You may
already be using them as callables in
array functions or call_user_func().

The best practices of object-oriented
programming are not incompatible
with functional programming. The
SOLID design principles, which form
the base of so much object-oriented
thought, can be augmented and refined
by a functional programming mindset.
As the SOLID design principles force
you to refine your class definitions to
smaller chunks of behavior, you may

even find yourself with a class that is
a thin wrapper around a single piece
of behavior in a method. This isn’t so
different from a pure function!

As a method of attack for including
functional programming in your
codebase, I’ve offered the idea of an
imperative shell around a function core
of business logic. Not only does this take
some of the SOLID design principles
much further than you might usually,
but it also has positive knock-on effects
for unit testing. Developers can even
use functional programming in the UI

through functional reactive program-
ming.

Hopefully, this walkthrough will
help dispel not only some preconceived
notions about functional programming
but also show how to use functional
programming in your existing codebase.
As developers, we can often recognize
that multiple perspectives sharpen our
analysis of a problem and help us create
work that solves the problem while
being more understandable and main-
tainable.

 Camilo rose from the swamps of South Florida, where he
taught the alligators PHP and Vim. He traveled the Sahara with
the Tuaregs of Morocco, and found the SOLID design principles
etched into glass beneath the sands. He then moved from Miami
to Chattanooga, to teach what he could, and receive the wisdom
of the ascetic programmers of Appalachia. Whether or not
Camilo received a Computer Science degree from Florida Inter-
national University remains a hotly contested debate among his
biographers, critics, and acolytes. @camdotbio

Related Reading

•	 A Case for Functional Programming in PHP by Lochemem Bruno Michael,
February 2021. http://phpa.me/3qkebjs

•	 Education Station: Calling all Callables by Chris Tankersley, June 2020.
https://phpa.me/education-june-20

•	 Removing the Magic with Functional PHP by David Corona, July 2016.
https://www.phparch.com/magazine/2016-2/july/

What if there’s no API?
Web scraping is a time-honored
technique for collecting the information
you need from a web page. In this book,
you’ll learn the various tools and libraries
available in PHP to retrieve, parse, and
extract data from HTML.

Order Your Copy
http://phpa.me/web-scraping-2ed

Sam
ple

phparch.com
https://twitter.com/camdotbio
http://phpa.me/3qkebjs
https://phpa.me/education-june-20
https://www.phparch.com/magazine/2016-2/july/

a php[architect] print edition

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

http://phpa.me/grumpy-testing-book
http://phpa.me/grumpy-testing-book

Subscribe or Renew Today
https://phparch.com/magazine

Thank you for reading this issue!
Each issue is made possible by readers like you. If you’re not
already subscribed, start today to enjoy these benefits:

•	 DRM-free digital issues in PDF, EPUB, and Mobi formats

•	 Discord channel for subscribers.

•	 Access to all back issues starting in 2002.

•	 We also have print subscriptions available.

https://phparch.com/magazine
http://phparch.com/magazine

