
www.phparch.com

Busy Worker BeesBusy Worker Bees

PHP Puzzles:
Rock Paper Scissors

Education Station:
Designing a REST API

Community Corner:
A Bref of Fresh Air

The Workshop:
Refactoring to an
Object Store

Sustainable PHP:
Machine Learning and
Yoda

Security Corner:
Basics of Password
Hashing

finally:
Doomsday Prepping

AL
SO

 IN
SI

D
E

How Agile Taught Me to be How Agile Taught Me to be
a Better Beekeepera Better Beekeeper

Technical Literacy: Technical Literacy:
Yes, You Need to KnowYes, You Need to Know

April 2021
Volume 20 - Issue 4

Oscar
Free Sample

a php[architect] guide

Order Your Copy
phpa.me/beyond-laravel

Harness the power of the Laravel
ecosystem to bring your idea to life.
In this book, Michael Akopov shares his experiences
creating software solutions that can not only survive
but thrive. If you’re looking to take a project to the
next level, he’ll show you how to put it together
without burning out. Includes a foreword by Taylor
Otwell, the creator of Laravel.

Available in Print+Digital and Digital Editions.

http://phpa.me/beyond-laravel
http://phpa.me/grumpy-testing-book

26 \ April 2021 \ www.phparch.com

Security Corner

Basics of Password Hashing
Eric Mann

Every web application that allows users to authenticate needs to ensure their users’ credentials
are afforded the best protection possible. Conventionally, this is done by storing only the hash of
a password rather than the password itself. Luckily, password hashing in PHP is secure, safe, and
remarkably straightforward to implement.

Last month1 we talked at length about different ways to make
hashes of the identical origin string unique. When two users
leverage the same authentication password, you don’t want
that to be evident in your data store. At the same time, it’s
helpful to back up a few steps and discuss password hashing
and the algorithms that make it secure.

Absolutely Random
The most fundamental concept in cryptography that everyone
needs to understand for hashing to make sense is random-
ness. In computing, there is no true sense of randomness.
Computers are fully deterministic machines that are purpose-
built to produce a specific output given a specific input. It’s
this predictable nature that makes computers reliable, but it’s
also what makes certain things hard.

The security behind cryptography is dependent on random-
ness. A “cryptographically secure” algorithm is one that
renders its output completely indistinguishable from random
noise. This is difficult to achieve in practice, but there are
convenient extensions and methods available to PHP devel-
opers that take care of the problem for you.

Primarily, PHP developers should use the password_hash()
function2 to generate hashed passwords. Similarly, you should
use the password_verify() function3 to verify the hashes of
any passwords you create. Both of these are securely imple-
mented in PHP and rely on a cryptographically secure source
of pseudo-randomness provided by the underlying operating
system.

Many older tutorials reference the mt_rand() function
as a pseudorandom number generator for use in PHP. It
indeed produces pseudorandom numbers, but the func-
tion is not cryptographically secure. If you know the seed
used to start the sequence, you can readily predict every
number the function produces. This is a reminder that
you should only rely on cryptographically secure functions
for security operations in PHP.

1 Last month: https://phparch.com/magazine/2021/march/
2 password_hash() function: https://php.net/password_hash
3 password_verify() function: https://php.net/password_verify

Time and Memory Factors
At the time of this writing, three algorithms are avail-
able for use with password_hash(). The default algorithm
today is CRYPT_BLOWFISH and can be used by passing either
PASSWORD_DEFAULT or PASSWORD_BCRYPT as a flag to the method:

$hash = password_hash($password, PASSWORD_DEFAULT);

Alternatively, if PHP was compiled with Argon24 support,
you can pass PASSWORD_ARGON2I or PASSWORD_ARGON2ID to
leverage the Argon2i or Argon2id algorithms, respectively.
Each algorithm choice offers different advantages to you for
security, but every algorithm will have an identifier coded into
the hash output of the function. Even if the default algorithm
in PHP changes in the future when you used PASSWORD_DEFAULT
in the past, the system can detect the use of bcrypt and verify
the hash properly. The password_needs_rehash() function can
also indicate that you should upgrade and re-hash a password
if you change the hashing algorithm in the future.

Developers can also tune each of these algorithms precisely
to take as much time and use as many system resources as
necessary to make hashing relatively slow on the server. The
advantage of a slow hash is that, should your database ever be
compromised and leaked, it will take an attacker a very long
time to guess any particular hash by brute force.

A slow hash is not a problem for everyday user authenti-
cation. If a password takes one second to hash, then it will
take one second for a user to authenticate with a correct
password. Assuming an attacker were to try to guess a
password by brute force, they would only be able to guess
one password per second. Given six alphanumeric charac-
ters, there are 56,800,235,584 possible passwords. Again,
guessing one password per second, it would take over
1,800 years to try all possible password combinations.

The PASSWORD_BCRYPT algorithm supports a cost factor—it
uses a cost of 10 by default. The higher the cost, the harder
your machine will need to work to generate a hash. Given
we want to target one hash per second, we can calculate the
appropriate cost factor for a given server using the routine in
Listing 1.

4 Argon2: https://en.wikipedia.org/wiki/Argon2

phparch.com
https://phparch.com/magazine/2021/march/
https://php.net/password_hash
https://php.net/password_verify
https://en.wikipedia.org/wiki/Argon2

 www.phparch.com \ April 2021 \ 27

Basics of Password Hashing

Security Corner

On my machine, the appropriate cost factor here is 15. This
cost is much higher than the default of 10.

The Argon2 family of hashes uses similar settings but
allows specifying both a time cost and a memory cost. For
this example, we’ll only tune the time cost, starting at a default
of 2 (Listing 2).

For example, my machine suggests a time cost of 17, which
is significantly higher than the hard-coded default. In order
to control the speed of your hashing, your team must test the
actual hashing speed of your server hardware and tune the
process accordingly!

The Argon2id hash uses the same options and settings
as Argon2i; you can use the same tuning script for both
algorithms. On my machine, they both suggest a similar
time factor.

Secure Password Verification
When your users attempt to authenticate, we need to re-hash
their supplied raw password and verify it hashes to the same
output we’ve stored elsewhere in our database. While it might
be tempting to do the hashing and string comparison directly,
developers should never implement their own cryptographic
operations.

Instead, we can leverage password_verify(), passing in
both the user’s supplied plaintext password and the stored

password hash against which we want to compare it. Inter-
nally, this function will re-hash the plaintext password using
the same algorithm and cost factor, then compare it securely
to our known hash.

Secure string comparison is a separate topic we will
discuss later. For now, know that merely comparing two
strings with simple equality operators (===) is insufficient
for cryptographically secure operations and trust that the
core functions provided by PHP are making intelligent,
secure decisions.

$valid = password_verify($password, $stored_hash);
if (!$valid) {
 throw new UnauthorizedException('Invalid password!');
}

PHP will use information in the stored hash (i.e., algorithm
and cost factors) and run the supplied plaintext through the
same hashing operation it used before. If the output of the
hash matches the known hash value, the function returns
true. Otherwise, it returns false, and it’s left to the developer
to handle this negative return.

In Conclusion
Hashing itself is complex. We aren’t detailing the algorithms
used in this article as that discussion would be incredibly
long and require a deep understanding of complicated math-
ematics. Luckily, PHP makes hashing passwords remarkably
straightforward.

Do not spend time trying to write your own hashing algo-
rithm. Do not try to invent your own password protection
or verification protocols. Don’t trust online tutorials that
use any other hashing functions for passwords. Do leverage
the built-in password hashing and verification functions
provided by PHP. It’s efficient and can be tuned to provide
maximum protection to your end-users.

 Eric is a seasoned web developer experi-
enced with multiple languages and platforms.
He’s been working with PHP for more than
a decade and focuses his time on helping
developers get started and learn new skills
with their tech of choice. You can reach out
to him directly via Twitter: @EricMann

Listing 1.

 1. $cost = 8;
 2.

 3. do {
 4. $cost += 1;
 5. $start = microtime(true);
 6. password_hash('test', PASSWORD_BCRYPT,
 7. ['cost' => $cost]);
 8. $end = microtime(true);
 9. } while (($end - $start) < 1);
10.

11. echo sprintf('Time cost => %d', $cost);

Listing 2.

 1. <?php
 2. $cost = 2;
 3.

 4. do {
 5. $cost += 1;
 6. $start = microtime(true);
 7. password_hash('test', PASSWORD_ARGON2I,
 8. ['time_cost' => $cost]);
 9. $end = microtime(true);
10. } while (($end - $start) < 1);
11.

12. echo sprintf('Time cost => %d', $cost);

Related Reading

• Security Corner: Cooking with Credentials
by Eric Mann, March 2021.
https://phpa.me/security-mar-21

• Security Corner: Credentials and Secrets Management
by Eric Mann, June 2019.
https://phpa.me/security-corner-june-2019

phparch.com
https://twitter.com/EricMann
https://phpa.me/security-mar-21
https://phpa.me/security-corner-june-2019

a php[architect] print edition

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

http://phpa.me/grumpy-testing-book
http://phpa.me/grumpy-testing-book

Subscribe or Renew Today
https://phparch.com/magazine

Thank you for reading this issue!
Each issue is made possible by readers like you. If you’re not
already subscribed, start today to enjoy these benefits:

• DRM-free digital issues in PDF, EPUB, and Mobi formats

• Discord channel for subscribers.

• Access to all back issues starting in 2002.

• We also have print subscriptions available.

https://phparch.com/magazine
http://phparch.com/magazine

