
www.phparch.com

Testing Testing
Assumptions Assumptions

PHP Puzzles:
Sending and Receiving
Polybius Ciphers

Education Station:
How to Build a
REST API

The Workshop:
New OS, Old PHP

Community Corner:
Interview with
Ryan Weaver

Sustainable PHP:
Wizard Thinking

Security Corner:
Radical Transparency

finally:
Awkward
ConversationsAL

SO
 IN

SI
D

E

On the Road to On the Road to
Long Living PHPLong Living PHP

Let’s Discover Let’s Discover
AtoumAtoum

Streamlining Streamlining
BehatBehat

May 2021
Volume 20 - Issue 5

Oscar
Free Sample

a php[architect] guide

Order Your Copy
phpa.me/beyond-laravel

Harness the power of the Laravel
ecosystem to bring your idea to life.
In this book, Michael Akopov shares his experiences
creating software solutions that can not only survive
but thrive. If you’re looking to take a project to the
next level, he’ll show you how to put it together
without burning out. Includes a foreword by Taylor
Otwell, the creator of Laravel.

Available in Print+Digital and Digital Editions.

http://phpa.me/beyond-laravel
http://phpa.me/grumpy-testing-book

 www.phparch.com \ May 2021 \ 15

FEATURE

Streamlining Behat
Oscar Merida

Behat, and feature tests overall, are crucial for giving you confidence that when
you refactor code, you don’t change how an application works and for helping you
understand how an application behaves in practice. Investing in integration and
functional tests is worth it in the long term, and in this article, we’ll see how I also
updated my Behat setup to run browser tests in Chrome.

On a recent client project, we’re modernizing and fixing
a WordPress-based application with a ton of custom code,
business logic, and design. As is usual in these cases, we were
brought in to sort out a legacy codebase that’s been through
multiple developer’s hands where the focus was on getting
things working. Unfortunately, technical debt, and code
quality, were afterthoughts at best, and we inherited multiple
similarly named files with identically named functions with
curiously similar code at a cursory glance.

Early on, I asked the development lead if I could use Behat
to write tests. I wanted to get the infrastructure in place for
the long term, and I pitched writing a few to ensure the home-
page loaded and then to walk through the purchase path on
the site. Given the project was in a startup-like mode of “get

things working” driven by business needs to bring in revenue,
I expected some push back. Instead, I was delighted and
surprised when he readily agreed and gave me the go-ahead.

Old Behat Configs
One thing I realized is that my usual setup for Behat was a
bit dated. I’d had some issues getting it to work originally, so
I tended to leave it alone once it was in a working state. Part
of the complication was using Selenium1 to control browsers.
While the promise of being able to use any supported browser
was enticing, in practice, I’d never needed to do so.

My composer.json file wasn’t too complicated, but I have
to confess that I arrived at it from trial-and-error and wasn’t
sure if I needed all the files specified as in Listing 1.

On the other hand, behat.yaml I’d essentially built by copy-
ing-and-pasting working code from elsewhere. See Listing 2.
I did not feel confident that any changes to it wouldn’t break
my setup. In practice, upgrading selenium or Firefox, at the
time, usually risked something breaking in an API some-
where. Which, you guessed it, meant I avoided upgrading
things. It’s the circle of life.

Updating Behat
I took advantage of a nearly-blank slate to put in more sound
foundations. Instead of using Selenium, which I’d picked since
I wanted to run tests in Firefox, I switched to using Chrome
directly via chromedriver. Firefox wasn’t an option when
I looked into it because its equivalent API to chromedriver
wasn’t feature-complete. This may not be the case anymore,
see “GeckoDriver vs. Marionette: Differences”2, and it is
worth re-evaluating.

Still, chucking Selenium slims down the number of
moving parts. So instead of talking to Chrome via Selenium,
we speak to it directly—one less thing to run.

1 Selenium: https://www.selenium.dev
2 “GeckoDriver vs. Marionette: Differences”:
http://phpa.me/gecko-vs-marionette

Listing 2.

 1. default:
 2. suites:
 3. default:
 4. contexts:
 5. - FeatureContext:
 6. arg:
 7. environment: dev
 8. extensions:
 9. Behat\MinkExtension:
10. goutte: ~
11. javascript_session: selenium2
12. selenium2:
13. wd_host: http://127.0.0.1:4444/wd/hub
14. base_url: http://local.example.com

Listing 1.

 1. {
 2. "require": {
 3. "behat/behat": "^3.3",
 4. "behat/mink": "^1.7",
 5. "behat/mink-extension": "^2.2",
 6. "behat/mink-selenium2-driver": "^1.3",
 7. "behat/mink-goutte-driver": "^1.2"
 8. }
 9. }

phparch.com
https://www.selenium.dev
http://phpa.me/gecko-vs-marionette

16 \ May 2021 \ www.phparch.com

Streamlining Behat

{
 "require": {
 "behat/behat": "^3.8",
 "dmore/behat-chrome-extension": "^1.3",
 "friends-of-behat/mink-extension": "^2.5",
 "behat/mink-browserkit-driver": "^1.3"
 }
}

One thing that we discussed early on in this engagement
was where to put the tests. I prefer to treat my test suite as
its own project. That means it gets its own composer.json
directory in a tests/ folder away from other code. Since
these aren’t unit tests and interact with the website via a
browser client, this setup delineates the separation. Test-
ing code is nowhere near the project’s web root. The code
that gets deployed with each release and its dependencies
don’t impact the main project’s dependencies.

I took the time to understand behat.yaml better. For one,
I discovered the autoload key that tells Behat’s PSR-0 auto-
loader to also look in our local bootstrap directory to load
classes. The suites section lets us configure the Contexts
available in our tests. We'll come back to it later. The two lines
under extensions set up the ChromeExtension driver to talk to
Chrome and tell the MinkExtension how to talk to it via the
api_url setting. See Listing 3.

We have a working setup that runs through all the tests
in the features/ folder from our tests/ directory. Since most
of the tests require chrome to be running, we wrote a script
around the commands needed to execute all the tests. The
entire script has more features, mainly to run on non-Linux
machines, but essentially it executes the commands shown in
Listing 4.

Simplifying the commands to run through the tests was
essential to ensuring the team would run them before submit-
ting a pull request.

Organizing Features
Behat calls the code that provides the
rules for what you’re testing “Features”
and provides a default boostrap/

FeatureContext.php file where you can
put them. It’s a class holding the PHP
code that executes when the matching
scenario step is called.

It doesn’t take much before that file
is brimming with tests, many unre-
lated to them. Instead of letting it grow
uncontrollably, take some time to move
related ones into independent contexts.
On this site, we quickly had two clear
functionalities. First, users can log
into the site, and they can book trips
through it. Each becomes a Context in
behat.yaml like so:

 suites:
 default:
 contexts:
 - FeatureContext:
 - BookingContext:
 - LoginContext:

Reusing Inputs
Frequently, you’ll need to provide
inputs to a step. Instead of hardcoding
those values in a scenario, I like to put
those in a yaml file loaded into each
feature. A context can take one or more
arguments defined in behat.yaml:

Listing 3.

 1. default:
 2. autoload:
 3. '': "%paths.base%/bootstrap"
 4. suites:
 5. default:
 6. contexts:
 7. - FeatureContext:
 8. extensions:
 9. DMore\ChromeExtension\Behat\ServiceContainer\ChromeExtension: ~
10. Behat\MinkExtension:
11. browser_name: chrome
12. sessions:
13. default:
14. chrome:
15. api_url: "http://127.0.0.1:9222"
16. socket_timeout: 60

Listing 4.

 1. CHROME_EXE=̀ which google-chromè
 2.

 3. # start chrome so we can stop it when done
 4. "$CHROME_EXE" --remote-debugging-address=0.0.0.0 --remote-debugging-port=9222 \
 5. --ignore-certificate-errors --disable-gpu --headless > /dev/null 2>&1 &
 6. CHROME_PID=$!
 7.

 8. # give chrome some time to launch
 9. sleep 1
10.

11. ./vendor/bin/behat --format=progress ./features
12.

13. # stop chrome
14. kill $CHROME_PID;

phparch.com

 www.phparch.com \ May 2021 \ 17

Streamlining Behat

- LoginContext:
 settingsYAML: "%paths.base%/shared.yml"

The constructor for the feature can parse that data as in
Listing 5.

Steps can use the values in $this->setttings:

/**
 * @When I submit the login details for :arg1 User
 */
public function iSubmitTheLoginDetailsFor($creds) {

 if (!isset($this->settings['Users'][$creds])) {
 $this->raiseError("Can't find user $creds");
 }

And, finally, this keeps the login scenarios readable—
more on that in a moment. Furthermore, we can reuse these
same values across scenarios. Because they’re defined in one
place, we Don’t Repeat Ourselves, so we stay DRY.

Scenario: A registered user can log in and see the user dashboard
 When I go to "/dashboard/"
 Then I should be on the "/login/" page
 And I submit the login details for "Testing" User
 Then I should see the welcome message for "Testing" User
 And I should see the referral code for "Testing" User

Finally, our steps are more reusable since they can work
with any set of values, like user credentials that conform to
the expected structure.

Scenario: Show usesr an error message if the password is wrong
 When I go to "/login/"
 And I submit the login details for "TestingBadPassword" User

Listing 5.

 1. <?php
 2.

 3. use Behat\MinkExtension\Context\RawMinkContext;
 4. use Symfony\Component\Yaml\Yaml;
 5.

 6. class LoginContext extends RawMinkContext
 7. {
 8. private $settings;
 9.

10. /**
11. * Initializes context.
12. */
13. public function __construct(string $settingsYAML) {
14. if (empty($this->settings)) {
15. $this->settings = Yaml::parse(
16. file_get_contents($settingsYAML)
17.);
18. }
19. }

Call for Speakers is Open!

Share your knowledge with PHP developers in
beautiful Austin, Texas on October 14-16, 2021!

Whether you’re in town, across the country, or across
an ocean, submit your presentation by June 30th for
consideration.

We’re looking forward to helping a few hundred
developers level up their craft and carry forward the
PHP community torch in-person in October.

View Speaker Package
https://cfp.longhornphp.com

phparch.com

18 \ May 2021 \ www.phparch.com

Streamlining Behat

Writing Scenarios
My first experiences with Behat were for testing Drupal sites
with the Drupal Extension3. Unfortunately, one of the habits
it encourages for writing Gherkin tests is to mix knowledge
of page structure into the tests. This leads to unreadable
tests when you’re looking for various elements. Consider
the following scenario. Now imagine we want to verify that
dozens of HTML elements are visible. Should our Gherkin
test know about the themes in our Drupal region? Could
non-technical stakeholders read such a test and make sense
of it with 12 or more elements, CSS selectors, and region
names? Those look like implementation details to me.

Scenario: Homepage Contact Us Link
 Given I am on the homepage
 Then I should see the link "Contact Us" in the "branding_second"
 region
 Then I should see the "Search" button in the "branding_second"
 region
 Then I should see the "div#block-system-main-menu" element in
the "menu" region

Nowadays, I prefer to write tests that hide HTML and
CSS details from the reader. They cut directly to what should
be on the page without cluttering it with where or how. That
detail is for writing custom steps.

@javascript
Scenario: An anonymous user can start to book a tour
 Given I go to a bookable tour page
 And I see the pricing table
 Then I click on the book now button for the bookable date

Unleashing CSS Selectors
Well, how do we interact with the web pages we’re testing
in PHP? It’s not a browser. However, the Mink project—
remember seeing something about Mink above?—provides
an API for us to inspect and interact with. First, look back at
the last scenario above. The @javascript tag above the starting
line of each tells Behat we’re going to test a page with, well,
JavaScript interactivity. You can omit it for basic tests, and
they’ll run faster. However, most applications depend heavily
on it, so the number of useful scenarios that don’t use it is
small.

Let’s look at a step from the “book a tour” test shown
earlier.

And I see the pricing table

Our BookingContext defines a method. Behat uses a
comment starting with @Then to match that method to the
readable English step we used there. The @Then is a placeholder.
In Gherkin, it lets us write “Then I see the pricing table” or

“And I see the Pricing table” and a few other alternatives to

3 Drupal Extension: http://phpa.me/drupal-extension

keep a nice flow to our steps. After we get the current $page
from the browser session, we use the find() method to look
for an element using a 'css' selector. In this case, we’re
looking for something, presumably a table, with an ID of
dates-pricing-table. If it’s not found, we throw an \Exception
to indicate the test failed as in Listing 6.

Since Features are classes, your free to add helper methods
to your tests when you identify similar tasks. I have one called
findByCSS() that condenses getting the page and issuing a
query into one step. Behat’s CSS selectors are also powerful.
Almost anything you can do in JavaScript to locate a DOM
node will work in step definition. For example, the snippet
in Listing 7 looks for an error message when invalid login
credentials are entered in the login form. We can search for
an input element with a specific name attribute. If we find it,
we can get its parent node and look within it for children with
a .validation class.

Listing 6.

 1. /**
 2. * @Then I see the pricing table
 3. */
 4. public function iSeePricingTable()
 5. {
 6. $page = $this->getSession()->getPage();
 7. $table = $page->find('css', '#dates-pricing table');
 8.

 9. if (empty($table)) {
10. throw \Exception("Pricing table not found");
11. }
12. }

Listing 7.

 1. <?php
 2. /**
 3. * @Then I see an error message for wrong login credentials
 4. */
 5. public function iSeeAnErrorMessageForWrongLoginCredentials() {
 6.

 7. $form = $this->findByCSS('#login_form');
 8. $emailInput = $form->find('css', 'input[name=email]');

9. $error = $emailInput->getParent()->find('css', '.validation');
10.

11. if (!$error) {
12. throw new \Exception("Can't find error message.");
13. }
14.

15. if ($error->getText() !== self::ERROR_BAD_CREDENTIALS) {
16. throw new \Excpetion(
17. "Wrong error message for wrong login credentials."
18.);
19. }
20. }

phparch.com
http://phpa.me/drupal-extension

 www.phparch.com \ May 2021 \ 19

Streamlining Behat

Behat’s CSS selectors and its more
specialized “named” selectors4 should
cover you when you’re looking for an
HTML element. The following step uses
the named selector to look for a button
with either that name attribute or the
matching text button. If it’s found, we
can call click() to interact with it and
move to the next step in our scenario.
See Listing 8.

Spinning
How do you account for interactivity on
a web page? By default, behat assumes
you are navigating between pages and
handles navigating a site well. But
what if the user clicks a button that
uses JavaScript to refresh part of the
DOM? A naive solution is to pepper
your tests or steps with sleep() calls
and hope you pick values long enough
for your tests to pass but not so long
that the test suite takes forever to run.
Oh, and they should also work across
developer machines and other testing
environments. It’s honestly a no-win
approach. Instead, Behat supports “spin”
functions. These are callables that look
for an element on the page, up to a spec-
ified timeout.

This part of a test waits for an
image slider to load before checking its
contents are correct (Listing 9).

These are called “spin” func-
tions because the built-in spin()
method will execute it at inter-
vals. It’ll stop if the callable returns true, in this case,
because we’ve found an itinerary slider item and continue
executing. If it reaches the 15-second timeout, an
\Exception is thrown to halt the test.

Conclusion
Taking the time to clean up cruft from my “it works” testing
skeleton was worth it. The cleaner setup has fewer depen-
dencies. Second, I learned to write tests that don’t scare away
non-coders, are more maintainable. Finally, spin functions
and CSS selectors are helpful in writing feature tests that work
on a modern, JavaScript-heavy UI.

4 “named” selectors: http://phpa.me/behat-css-expression

Listing 8.

 1. /**
 2. * @Then I click on the :btnNameOrText button
 3. */
 4. public function iClickOnTheButton($btnNameOrText)
 5. {
 6. $page = $this->getSession()->getPage();
 7. $btn = $this->page->find('named', ['button', $btnNameOrText]);
 8. if (empty($btn)) {
 9. throw new \Exception("Button '$btnNameOrText' not found");
10. }
11.

12. $btn->click();
13. }

Listing 9.

 1. /**
 2. * @Then I can click to see :slide in the itinerary slide
 3. */
 4. public function iCanClickToSeeInTheItinerarySlide($slide)
 5. {
 6. // wait for the slider to load and initialze
 7. $this->spin(
 8. function ($context) {
 9. // expect to return false or throw an exception if
10. // we're waiting for an element to load
11. $node = $context->findByCSS(
12. "#itinerarySlider1Nav a.slider-nav-item"
13.);
14.

15. return !empty($node->getText());
16. },
17. 15 // seconds
18.);
19.

20. // rest of testing code continues

Related Reading

• The Workshop: Specification BDD with Phpspec
by Joe Ferguson, May 2020.
https://phpa.me/workshop-may-20

• Capturing an API’s Behavior With Behat
by Michael Heap, January 2017.
https://www.phparch.com/magazine/2017-2/january/

• Leveling Up: Phpspec, TDD, and Mock Objects
by David Stockton, May 2015.
https://www.phparch.com/magazine/2015-2/may/

phparch.com
https://twitter.com/SyntaxSeed
https://phpa.me/workshop-may-20
https://www.phparch.com/magazine/2017-2/january/
https://www.phparch.com/magazine/2015-2/may/

a php[architect] print edition

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

http://phpa.me/grumpy-testing-book
http://phpa.me/grumpy-testing-book

Subscribe or Renew Today
https://phparch.com/magazine

Thank you for reading this issue!
Each issue is made possible by readers like you. If you’re not
already subscribed, start today to enjoy these benefits:

• DRM-free digital issues in PDF, EPUB, and Mobi formats

• Discord channel for subscribers.

• Access to all back issues starting in 2002.

• We also have print subscriptions available.

https://phparch.com/magazine
http://phparch.com/magazine

