
www.phparch.com

It’s Really
an Upgrade

The Workshop:
Laravel Livewire

Community Corner:
PHPUnit Creator
Sebastian Bergmann

PHP Puzzles:
Animated Life

Design Patterns by
Moonlight:
When There Be
Dragons

Education Station:
PHP is the Worst

Security Corner:
The Pit of Success

finally:
Back to School

AL
SO

 IN
SI

D
E

Why Would Anyone Want to Why Would Anyone Want to
Downgrade Their PHP Code?Downgrade Their PHP Code?

CQRS—Reasoning and CQRS—Reasoning and
Architectural ProspectsArchitectural Prospects

September 2021
Volume 20 - Issue 9

oscar
Free Article

Promo: PHPARCH
20% off for 3 months

www.cloudways.com

Optimal PHP Hosting
for Zero Downtime and
Best Performance
Multiple performance tests show Cloudways improves

loading times for websites by 200%! With innovative

features like an optimized stack, advanced built-in

caches, CloudwaysCDN, PHP 7.3 ready servers and so

much more, Cloudways enables you to build apps with

unmatched performance and higher conversion rates.

Moving Dreams
Forward

https://www.cloudways.com/en/php-hosting.php

40 \ September 2021 \ www.phparch.com

Education Station

PHP is the Worst
Chris Tankersley

I have been programming for nearly twenty years at
this point, and I have worked in various languages.
At many of my previous jobs, as well as my current
one, I have had the pleasure of working with PHP
as the core language of my job. Since the first
time I started working with PHP, I heard all the
complaints about the language, but I also saw the
power that PHP has.

PHP is, to say the least, an inter-
esting language. The language and
the programs that are built with it fall
into two design philosophies, often
simultaneously. I do not mean software
development lifecycles like waterfall
or agile, but rather the fundamental
ideas governing what software should
look like. These ideas have come to be
known as “The Right Way” and “Worse
is Better.”

PHP encompasses this weird area
where, when people complain that the
language sucks, they are correct. There
are a lot of things that are wrong with
the language. There used to be even
worse things with the language. The
derided “PHP: a fractal of bad design”1
does have a few correct points, even if
those points were out of date at the time
of publication over nine years ago.

However, at the same time, PHP
allows developers to create structur-
ally “correct” software and embrace
ideas from other languages that are
considered good practices. You have
frameworks like Laminas and Symfony,
which use best practices for object-ori-
ented programming to allow developers
to write properly structured code.

How does PHP do this? It is because
PHP is the worst.

1 “PHP: a fractal of bad design”:
https://shorturl.at/agitC

Designing Software
In 1991, Richard P. Gabriel published
the essay “Lisp: Good News, Bad News,
How to Win Big”2. The paper’s thesis is
that, when it comes to software design
and longevity, the idea of “Worse is
Better” will be the superior option. He
came to this conclusion after realizing
that two different schools of program
design had emerged, which he desig-
nated as the “MIT/Standford Style”
or “The Right Way” and what became
known as the “New Jersey Style,” or

“Worse is Better.”
The two philosophies were similar

in their aims but different in key areas.
Each style focused on five key areas
of thought: Simplicity, Correctness,
Consistency, and Completeness.

The MIT style3 was described as:

• Simplicity: the design must be
simple, both in implementation
and interface. It is more important
for the interface to be simple than
the implementation.

• Correctness: the design must be
correct in all observable aspects.
Incorrectness is simply not
allowed.

• Consistency: the design must
not be inconsistent. A design

2 “Lisp: Good News, Bad News, How to
Win Big”: https://dreamsongs.com/WIB.html
3 MIT style:
https://dreamsongs.com/WIB.html

is allowed to be slightly less
simple and less complete to avoid
inconsistency. Consistency is as
important as correctness.

• Completeness: the design must
cover as many important situa-
tions as is practical. All reasonably
expected cases must be covered.
Simplicity is not allowed to overly
reduce completeness.

As for the New Jersey Style4, Gabriel
says that it defines its goals as:

• Simplicity: the design must be
simple, both in implementation
and interface. It is more import-
ant for the implementation to
be simple than the interface.
Simplicity is the most important
consideration in a design.

• Correctness: the design must be
correct in all observable aspects. It
is slightly better to be simple than
correct.

• Consistency: the design must not
be overly inconsistent. Consisten-
cy can be sacrificed for simplicity
in some cases. Still, it is better to
drop those parts of the design that
deal with less common circum-
stances than to introduce either
implementational complexity or
inconsistency.

4 New Jersey Style:
https://dreamsongs.com/WIB.html

phparch.com
https://shorturl.at/agitC
https://dreamsongs.com/WIB.html
https://dreamsongs.com/WIB.html
https://dreamsongs.com/WIB.html

 www.phparch.com \ September 2021 \ 41

Education Station
PHP is the Worst

• Completeness: the design must
cover as many important situa-
tions as is practical. All reasonably
expected cases should be covered.
Completeness can be sacrificed in
favor of any other quality. In fact,
completeness must be sacrificed
whenever implementation simplic-
ity is jeopardized. Consistency can
be sacrificed to achieve complete-
ness if simplicity is retained;
especially worthless is consistency
of interface.

The crux of the argument uses LISP
and C as examples for why worse is
better. To Gabriel, a LISP programmer,
LISP was a much better language than
C. It was just as fast as C, and Common
LISP had spent years being designed,
developed, and standardized. The spec-
ification that defined the language had
taken the best of all the various splinter
LISPs, and modern development envi-
ronments were some of the best around
for LISP developers.

LISP was The Right Way
LISP represented “The Right Way”
of software development. LISP was
considered simple to interface with,
and you could interact with it in various
ways. Want to call LISP from Fortran?
You can invoke LISP from Fortran and
pass data in, and vice versa. You could
happily use all the modern luxury of
LISP while working with your legacy
code.

LISP had a consistent design, thanks
to its specification. If you look at a
modern language like Python, a spec-
ification goes a long way in providing
multiple backends and compilers that
all interpret or compile the code in the
same way. The tooling was top-notch,
and 1991 LISP had all the creature
comforts we still enjoy today, like step
debugging, data inspection, and fancy
editors.

As a language, LISP was complete.
It had an advanced object-oriented
programming layer, multiple inher-
itance, first-class objects as well as
functions, and typing. LISP looked like

the language that developers would
want.

In 1991 LISP, as a language, was in
probably the best shape it had ever been.
This technical correctness was not
borne out by actual usage. LISP devel-
opment shops were on a decline. Years
of bad press and positioning missteps
had hindered LISP’s external reputa-
tion. It was no longer being looked at as
a way to deliver software to end-users.

In development terms, LISP tends
to represent many of the same ideals
as “Big Design Up Front.” If you have
worked with design methodologies like
the Waterfall Model5 you can already
see where some of the issues crop up.

“The Right Way” heavily stresses consis-
tency, correctness, and ensuring that all
conceivable issues are thought of.

LISP itself was also not a singular
language but a family of languages.
While Common LISP was meant to be a
standard, LISP itself existed as a variety
of actual implementations based on
the work needed to be done. An article
on Lockless Inc’s website6 calls out this
fragmentation as one of the defining
reasons that LISP ultimately failed.
Even with LISP adhering to the “Right
Way” of software design, the fragments
were distinct enough that code mainte-
nance and portability suffered.

C and Unix Were the
Wrong Way
In the meantime, C was gaining ground
as the preferred way to develop soft-
ware, thanks to Unix. C was designed
for Unix, and Unix was designed from

5 Waterfall Model: https://w.wiki/k2M
6 Lockless Inc’s website:
https://phpa.me/lockless-lisp-failed

C. Its developers did not take the same
design stance as LISP and its authors at
MIT.

In 1972, C was designed as a simple
language. By 1991 it had changed
somewhat, but the fundamentals of C
had not changed. Features were added
based on what developers needed and
what Unix needed. Writing a compiler
and programs was easy because the
language was so simple. While the

language did not stop you from doing
complex programming, C had an
estimated 50-80% of what program-
mers should want compared to LISP.

C was, however, incredibly
portable. It also ran on underpow-
ered hardware compared to what
would usually be used for LISP soft-
ware and environments. This factor
opened it up to being able to compile
and run software on a broader range

of machines. C software, and Unix,
were so easy to run, Gabriel considered
Unix and C viruses.

Development of C occurred as
Dennis Ritchie designed and built Unix.
Unix was also easily distributed to
various other users thanks to Bell Labo-
ratories not being allowed to formally
enter the computer space7. These other
users helped patch Unix for their needs.
Dennis Ritchie was able to incorporate
those patches as needed versus having
to think about those needs upfront.

Unlike LISP, C is still used quite a
bit. While higher-level and interpreted
languages like PHP, JavaScript, and
Python are the go-to’s for many devel-
opers, C is used to develop many of
those higher-level languages. C is still
used in smaller, lower-powered devices
even with competitors like Rust starting
to gain ground.

PHP is the Worst

Therefore, the worse-is-better
software first will gain acceptance,
second will condition its users
to expect less, and third will be

7 computer space: https://w.wiki/43QN

“In 1991 LISP, as a language,
was in probably the best

shape it had ever been. This
technical correctness was not

borne out by actual usage.

phparch.com
https://w.wiki/k2M
https://phpa.me/lockless-lisp-failed
https://w.wiki/43QN

42 \ September 2021 \ www.phparch.com

Education Station
PHP is the Worst

improved to a point that is almost
the right thing.

– Richard Gabriel

A few years after this revelation,
Rasmus Lerdorf started working on
Personal Home Page/Forms Interpreter,
which we now know as PHP. PHP/FI
was born out of a need for Lerdorf to
maintain his home page and interact
with forms and databases. PHP/FI
was not even designed as an actual
programming language but as a layer of
scripts and functions on top of C.

PHP is Simple

The design must be simple, both in
implementation and interface.

Under the hood, PHP uses the C
language, which we have already
established is “worst.” However, this
brings a few advantages, with the most
significant being that a more simple
underlying language can make it easier
to extend. While Hack/HHVM went

with a more C++ approach, PHP itself
is still in C.

Learning the internals of the language
can be done in just a few hours. Eliz-
abeth Smith has an excellent talk on
PHP Extensions8 that can be absorbed
in a single sitting, and there is a wealth
of information on how the internals
work. The language itself borrows from
other C-style languages, making it
easy to read and switch to from other
languages in the C-style family.

Much of PHP’s interface, or standard
library, is considered simple because
much of the core functionality only
wraps various C libraries and exposes
them almost as-is. While this leads to
some inconsistencies in the interface,
it provides a familiar environment for
developers coming from C or C++.

The PHP language is also heavily
focused on web development. Taking
a concept from HTTP and finding
an analog in the language is usually
straightforward. Want the headers

8 PHP Extensions:
https://www.slideshare.net/auroraeosrose

for a request? get_headers()9 has you
covered. Getting request information
is as simple as reading $_GET and $_POST
global variables.

PHP keeps the developer interface
simple and keeps internals as simple as
possible.

PHP is (mostly) Correct

The design must be correct in all
observable aspects. It is slightly
better to be simple than correct.

Here, PHP tends to err on the side
of “simple” versus correct. Up until the
advent of HHVM, there was no speci-
fication on how the language looked or
functioned. The Zend Interpreter itself
was the specification, and the language
was always “correct” in how it behaved
(excluding actual bugs). If you wanted
to replace the PHP engine with some-
thing else, it would need to implement
all the quirks of the existing engine.

9 get_headers():
https://php.net/get-headers

D
ocker for D

evelopers, 2nd Edition

Tankersley

Chris Tankersley is a PHP Developer living in Northwest Ohio. He

has been developing PHP applications for more than ten years, across

a wide variety of frameworks and business needs. In addition to

programming, Chris manages hosting and server deployments for

developers that are looking for more than just what basic hosting

provides. He currently spends most of his time working with Sculpin,

Zend Framework 2, and Drupal.

Chris is also an author of many PHP articles for php[architect], as

well as a speaker, traveling around the US giving talks at many PHP-

based conferences. Chris also helped found the Northwest Ohio PHP

User Group. Chris is the PHP FIG representative for Sculpin, a static

site generator written in PHP, and the lead developer for the PHP

Mentoring website.

Docker For Developers is designed for developers

who are looking at Docker as a replacement for

development environments like virtualization,

or devops people who want to see how to take

an existing application and integrate Docker into

that work� ow. � is book covers not only how

to work with Docker, but how to make Docker

work with your application.

� is revised and expanded edition includes creating

custom images, working with Docker Compose and

Docker Machine, managing Logs, and 12-factor

applications.

You’ll learn how to work with containers, what they

are, and how they can help you as a developer.

See how Docker simpli� es building, testing, and

deploying distributed applications. By running

Docker and separating out the di� erent concerns of

your application you will have a more robust, scalable

application.

Learn how to use Docker to deploy your application

and make it a part of your deployment strategy,

helping not only ensure your environments are the

same but also making it easier to package and deliver.

www.phparch.com

Chris Tankersley

2nd Edition

Docker For Developers is designed for developers looking at
Docker as a replacement for development environments like
virtualization, or devops people who want to see how to take
an existing application and integrate Docker into their work-
flow.

This revised and expanded edition includes:
• Creating custom images
• Working with Docker Compose and Docker Machine
• Managing logs
• 12-factor applications

Order Your Copy
http://phpa.me/docker-devs

phparch.com
https://www.slideshare.net/auroraeosrose
https://php.net/get-headers

 www.phparch.com \ September 2021 \ 43

Education Station
PHP is the Worst

Many of the core functions’ lax function parameters and
return types adhere to making working with the system more
accessible. A function like strpos()10 that returns either an
integer or a boolean is slightly easier to handle than having a
method that returns an integer or throws an exception.

Looking at how the language is evolving, almost all new
functionality is based on things developers need versus a
strict idea of “fix this because it’s wrong.” A larger focus on
strict typing and exceptions-over-errors is a more correct
way of doing things. Still, other things like short arrow func-
tions, attributes, and enums are things that developers want
to simplify their code.

PHP Does Not Have to be Consistent

The design must not be overly inconsistent. Consistency
can be sacrificed for simplicity in some cases.

I am not even going to pretend that PHP is consistent, but
it is consistent enough. People may complain about needle/
haystack parameter order when it comes to arrays versus
string functions. However, in general, array functions are
consistent, and string functions are consistent. It is simpler
to be consistent with the underlying C libraries than being
consistent in the language.

PHP is consistent enough in other ways. As I mentioned
with strpos(), PHP tends to be fairly consistent in returning
FALSE for functions that encounter errors. That is not neces-
sarily correct, but it is consistent. Function names with
underscores and without underscores tend to match their
underlying libraries.

PHP, the language, sacrifices consistency for simplicity, but
even without a specification, it tries to be consistent where it
makes sense.

PHP is as Complete as it Needs to Be

The design must cover as many important situations as is
practical.

At any given time, PHP is as complete as it needs to be to
do what it was designed to do—write web applications. PHP
was never designed to be a language that covered every single
problem in the world of programming. Still, its simplicity
lends itself to being used in situations outside of the web.
Its initial focus on working with the web helped shape what
features were initially needed, and that trend continues today.

Changes to the core language tend to be primarily driven by
developer needs. The community at large puts forth changes,
the community votes, and the new features are rejected,
changed, or accepted. Much of the innovation in the language
comes from the need to do our jobs quicker. Even when we
are cribbing features from other languages, it is because it

10 strpos(): https://php.net/strpos
11 actually better: https://dreamsongs.com/WorseIsBetter.html

makes our development lives easier, and rarely is it because
another language does it “more correct.”

PHP allows you to build web applications today. It will
still allow you to make web applications in five years, just
with some new features. The language itself, however, is as
complete as it needs to be today. We can always add to or
change the language if we need to.

Is Worse Better?
Gabriel admits that the idea of “worse-is-better” is designed
in such a way to look bad and probably should not be the
better option. The only problem is that when he looks at the
two ideas, “worse-is-better” still ends up being the more flex-
ible option and “has better survival characteristics” compared
to the MIT/“right-way” design philosophy. If we look at PHP,
it corroborates the idea that worse is better.

In the intervening years, Gabriel has admitted that he
waffled between which is actually better11. PHP as a commu-
nity constantly argues whether we should do things correctly
or continue to do things simply. We have frameworks like
Laminas that build libraries in a classic computer science way,
and then we have frameworks like Laravel that focus directly
on developer experience and speed. PHP itself allows both.

The next time someone wants to rag on PHP, own it. The
language sucks. But in many ways, the longevity and wide-
spread use of PHP is a testament to the fact that doing things

“the right way” is not always better than doing things the
“worst” way. If someone complains about the framework you
are using, understand that it does not matter in the long run.
Pick a design philosophy that you feel is comfortable for you,
and be happy knowing that being worse might actually be
better.

 Chris Tankersley is a husband, father,
author, speaker, podcast host, and PHP
developer. Chris has worked with many
different frameworks and languages
throughout his twelve years of programming
but spends most of his day working in PHP
and Python. He is the author of Docker for
Developers and works with companies and
developers for integrating containers into
their workflows. @dragonmantank

Related Reading

• The Business Of PHP
by Sherri Wheeler, April 2020.
https://phpa.me/business-php-wheeler

• finally{}: The Seven Deadly Sins of Programming: Envy
by Eli White, March 2019.
https://phpa.me/finally-mar-19

• finally{}: 25 Years of PHP
by Eli White, August 2019.
https://phpa.me/finally-aug-19

phparch.com
https://php.net/strpos
https://dreamsongs.com/WorseIsBetter.html
https://twitter.com/dragonmantank
https://phpa.me/business-php-wheeler
https://phpa.me/finally-mar-19
https://phpa.me/finally-aug-19

a php[architect] print edition

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

http://phpa.me/grumpy-testing-book
http://phpa.me/grumpy-testing-book

a php[architect] guide

Purchase Your Copy
https://phpa.me/php-development-book

Learn how to build dynamic and secure websites.
The book also walks you through building a typical Create-Read-
Update-Delete (CRUD) application. Along the way, you’ll get solid,
practical advice on how to add authentication, handle file uploads,
safely store passwords, application security, and more.

Available in Print+Digital and Digital Editions.

https://phpa.me/php-development-book

