
www.phparch.com

DecryptingDecrypting
 Cryptography Cryptography

The Workshop:
Local Development with
CraftCMS Nitro

Community Corner:
PHPUnit Creator
Sebastian Bergmann Pt2

Education Station:
Windows 11 for PHP
Development

PHP Puzzles:
Time Value of Money

Security Corner:
Updating the OWASP
Top Ten

Design Patterns by
Moonlight:
When There Be Dragons

finally{}:
Rubber Ducky, You’re
the One!

A
LS

O
 IN

SI
D

E

Cryptography 101Cryptography 101

What I Wish Someone What I Wish Someone
Told Me About SQL Told Me About SQL
Database DesignDatabase Design

October 2021October 2021
Volume 20 - Issue 10Volume 20 - Issue 10

Promo: PHPARCH
20% off for 3 months

www.cloudways.com

Optimal PHP Hosting
for Zero Downtime and
Best Performance
Multiple performance tests show Cloudways improves

loading times for websites by 200%! With innovative

features like an optimized stack, advanced built-in

caches, CloudwaysCDN, PHP 7.3 ready servers and so

much more, Cloudways enables you to build apps with

unmatched performance and higher conversion rates.

Moving Dreams
Forward

https://www.cloudways.com/en/php-hosting.php

14 \ October 2021 \ www.phparch.com

Security Corner

Updating the OWASP Top Ten
Eric Mann

The Open Web Application Security Project (OWASP) is a non-profit that focuses on web security
research, training, and documentation to help developers make the world a safer place. They
regularly collate application security risks seen in the wild and publish a list of the most frequently
encountered issues. This list, the OWASP Top Ten, is a standard tool used by developers and
security auditors alike to gauge the level of security maturity of a project or the team maintaining it.

1 OWASP Top 10 team 2021: https://owasp.org/Top10/

OWASP solicits feedback from the development community and
updates its list of the top 10 application security risks (ASRs) roughly
every three years. The last edition was published in 2017, and the
organization has now published a draft of its latest update, OWASP
Top 10 team 20211, as shown in Figure 1. In this latest version, few
items from 2017 remain the same. OWASP has added three new
risks, re-scoped existing risks to cover a broader definition of the risk
they represent and reprioritized the existing ones based on market
data regarding the frequency with which each risk is seen in the wild.

For context and background, the previous edition of the OWASP
Top Ten defined the following application security risks in order of
frequency:

• ASR1—Injection
• ASR2—Broken Authentication
• ASR3—Sensitive Data Exposure
• ASR4—XML External Entities (XEE)
• ASR5—Broken Access Control
• ASR6—Security Misconfiguration
• ASR7—Cross-Site Scripting (XSS)
• ASR8—Insecure Deserialization
• ASR9—Using Components with Known Vulnerabilities
• ASR10—Insufficient Logging and Monitoring

Remember, the order of the OWASP Top Ten is defined
by how prevalent the risk has been in the software
community. It is not a representation of the severity of
each risk. Cross-site request forgery, for example, is an
incredibly severe risk to many applications but was seen
rarely enough in 2017 that it fell off that edition of the list
entirely.

Revised Priorities
In the list’s latest draft edition, Broken Access Control has

been elevated to first place. This isn’t a reflection of a change
in the impact of the risk but does reflect that this risk has
been seen more frequently in the wild—either through
internal audits or through threat actors testing systems tested
for broken access control. The scope of its documentation
hasn’t really changed, either, just the prioritization placed on
its awareness by OWASP.

“Sensitive Data Exposure” has also moved up on the list to
second place, but with a tightened scope of “Cryptographic

Figure 1. Draft Edition 2021

© Copyright 2021—OWASP Top 10 team.

phparch.com
https://owasp.org/Top10/

 www.phparch.com \ October 2021 \ 15

Updating the OWASP Top Ten

Security Corner

Failures.” This move addresses the root cause of engineering
mistakes that lead to sensitive data exposure. A solid example
is a high potential for cryptographic misconfigurations
in primitive data structures like JSON web tokens like we
discussed last month2.

As of 2021, “Injection” moves down the list by one spot to
third place. Its scope has also expanded to include cross-site
scripting, which used to be a risk category in its own right but
is a type of injection.

The previous list’s “XML External Entities” risk has been
merged into the Security Misconfiguration category, and
together, they rise to fifth place in the current list.

“Using Components with Known Vulnerabilities” has
repeatedly been a highly prioritized risk in the community but
has been relatively low in the OWASP list. The latest edition
rebrands this risk category as “Vulnerable and Outdated
Components,” also shifting it up from ninth to sixth place in
the opinion of OWASP contributors.

PHP developers can avoid using outdated components by
leveraging tools like Composer to manage their depen-
dencies and keeping those libraries up-to-date. Hosted
services like GitHub’s Dependabot3 or Snyk.io4 can scan
for and sometimes update outdated components auto-
matically. Developers can also leverage the Local PHP
Security Checker5 to proactively scan their projects for
outdated or insecure dependencies during development.

Similarly, “Broken Authentication” has been renamed
“Identification and Authentication Failures” and shifts quite
a way down the list to seventh place. While authentication
issues are still an ever-present risk to web applications, recent
advances in the standardization of web frameworks have
made it easier to set secure defaults and “accidentally” do
things the right way from the start. This is still a risk that
application engineers need to worry about, but it’s becoming
harder to make mistakes as “the right thing” is made an easi-
er-to-implement standard.

Finally, “Insufficient Logging and Monitoring” have both
moved up the list to eighth place and been redefined as “Secu-
rity Logging and Monitoring Failures.” This risk category has
been expanded to include additional types of failures and
represents risks that aren’t well-reflected in existing CVE
(Common Vulnerabilities and Exposures) data.

New Risks
There are three entirely new additions to the latest version

of the list. Some are due to the ongoing evolution of both web
development—namely, that we continue to focus on a “shift

2 last month: https://phpa.me/security-pit-of-success
3 GitHub’s Dependabot: https://phpa.me/github-dependabot-security
4 Snyk.io: https://phpa.me/snyk-composer-vulnerabilities
5 Security Checker: https://phpa.me/github-security-checker

left” approach to security responsibility, further making secu-
rity everyone’s job.

“Shifting left” is the paradigm where downstream respon-
sibilities for software are progressively shifted upstream
towards the development team. The first occurrence of
this that many of us are probably familiar with is adding
operation responsibilities to development teams who
previously relied on separate parties to run their software
in production. Today, we call this a DevOps philosophy.
The newest occurrence is shifting security responsibilities
gradually from a dedicated team into development—we
call this DevSecOps.

Insecure Design
Security is, in fact, the responsibility of the entire engi-

neering team regardless of whether or not their title and
job description formally reflect that fact. You are respon-
sible for the security of your own code and, increasingly, for
understanding the long-term security impacts of any design
decision you make. Secure system architecture does not need
to be difficult, but it’s too often an afterthought for many
development teams. The fact that security in system design
can be an afterthought is what slates this new ASR as the
fourth item on the list.

Software and Data Integrity Failures
While this is a new category in its own right, it includes the

Insecure Deserialization risks from the last edition. It’s too
easy to make assumptions about the nature of the data—or
dynamic code—flowing into or out of a system and fail to
properly validate or verify that data’s integrity. These failures
lead to security weaknesses in our applications and present
risks to the stability and security of our web applications.
The SolarWinds supply chain attack from 20206 is a crucial
example of software integrity failure in practice.

Server-Side Request Forgery (SSRF)
Whereas cross-site request forgery attempts to trick a

client browser into making malicious requests, server-side
request forgery is an attack against a hosted application
itself. This might take the form of tricking an application to
make requests to other sensitive systems within an otherwise
protected network, thus giving an attacker the ability to read
or even update resources that would otherwise be protected
from public view. It’s a relatively rare security risk when
compared to the frequency of the other categories. Still, it
appears often enough in the wild that every engineer hosting
an application should be aware of it.

6 attack from 2020: https://phpa.me/security-supply-chain

phparch.com
https://phpa.me/security-pit-of-success
https://phpa.me/github-dependabot-security
https://phpa.me/snyk-composer-vulnerabilities
https://phpa.me/github-security-checker
https://phpa.me/security-supply-chain

16 \ October 2021 \ www.phparch.com

Updating the OWASP Top Ten
Security Corner

Things to Keep in Mind
The OWASP Top Ten is a valuable guide for any developer;

security is everyone’s responsibility, regardless of whether
it’s explicitly listed in your job description. Every developer
should be intimately familiar with the risks enumerated in
this list to ensure their applications and deployments avoid
these common pitfalls.

Still, remember this is but one list of risks your applica-
tion might face, and it is in no way exhaustive7. Any security
expert can name offhand several risks you and your team
might encounter that are not included in this list. This isn’t
because they’re less of a threat—they just haven’t been seen
frequently enough in the wild to be considered among the top
ten. The relative rarity of an application security risk does not
afford you any protection whatsoever.

You owe it to yourself and your customers to familiarize
yourself with the OWASP Top Ten and fully understand how
to avoid each of the risks it categorizes. You also owe it to
yourself to think beyond the list about other risks your team,
your application, or your customers might face in practice.

7 it is in no way exhaustive: https://phpa.me/security-risk-of-lists

Related Reading

• Security Corner: The Risk of Lists by Eric Mann, April
2019. https://phpa.me/security-apr-19

• Security Corner: Updates to the OWASP Top
Ten—Logging by Eric Mann, January 2018.
https://phpa.me/security-corner-jan-2018

• PHP and Database Access by Erwin Earley, August 2020.
https://phpa.me/2020-08-php-db

 Eric is a seasoned web developer experi-
enced with multiple languages and platforms.
He’s been working with PHP for more than
a decade and focuses his time on helping
developers get started and learn new skills
with their tech of choice. You can reach out
to him directly via Twitter: @EricMann

Using Xdebug to squash bugs, identify bootlenecks, and boost productivity?

Become a Pro or Business supporter to
help ongoing development.

Supporters get help via email and
elevated issue priority.

https://xdebug.org/support support@xdebug.org

phparch.com
https://phpa.me/security-risk-of-lists
https://phpa.me/security-apr-19
https://phpa.me/security-corner-jan-2018
https://phpa.me/2020-08-php-db
https://twitter.com/EricMann
http://phpa.me/fizzbuzz-book

a php[architect] print edition

Order Your Copy
phpa.me/grumpy-testing-book

Learn how a Grumpy Programmer approaches
testing PHP applications, covering both the technical
and core skills you need to learn in order to make
testing just a thing you do instead of a thing you
struggle with.

The Grumpy Programmer’s Guide To Testing PHP
Applications by Chris Hartjes (@grmpyprogrammer)
provides help for developers who are looking to
become more test-centric and reap the benefits of
automated testing and related tooling like static
analysis and automation.

Available in Print+Digital and Digital Editions.

http://phpa.me/grumpy-testing-book
http://phpa.me/grumpy-testing-book

a php[architect] guide

Purchase Your Copy
https://phpa.me/php-development-book

Learn how to build dynamic and secure websites.
The book also walks you through building a typical Create-Read-
Update-Delete (CRUD) application. Along the way, you’ll get solid,
practical advice on how to add authentication, handle file uploads,
safely store passwords, application security, and more.

Available in Print+Digital and Digital Editions.

https://phpa.me/php-development-book

