
Testing The CoreTesting The Core

The Workshop:
Accept Testing with
Codeception

Education Station:
Which License to
Choose?

PHP Puzzles:
Making Some Change

Security Corner:
Operational Security

DDD Alley:
When the New
Requirement Arrives

PSR Pickup:
PSR 12 - Extending
Coding Style Standards

Drupal Dab:
V9 Intro and Install

finally{}:
Tech is Taking Sides

A
LS

O
 IN

SI
D

E

Growing the PHP CoreGrowing the PHP Core

Hack Your Home With a PiHack Your Home With a Pi

a php[architect] print edition

Order Your Copy
phpa.me/grumpy-cookbook

Learn how a Grumpy Programmer approaches
improving his own codebase, including all of the
tools used and why.

The Complementary PHP Testing Tools Cookbook is
Chris Hartjes’ way to try and provide additional tools
to PHP programmers who already have experience
writing tests but want to improve. He believes that
by learning the skills (both technical and core)
surrounding testing you will be able to write tests
using almost any testing framework and almost any
PHP application.

Available in Print+Digital and Digital Editions.

http://phpa.me/grumpy-testing-book
https://phpa.me/grumpy-cookbook

 www.phparch.com \ April 2022 \ 23

Education Station

Which License to Choose?
Chris Tankersley

Licensing for software, whether it is open source or not, is an integral part of releasing software.
The commercialization of software has made it necessary for developers to be explicit in how
users or other developers consume their software. Unfortunately, the topic of licensing is not as
straightforward as many developers would like it to be.

As a quick refresher, licenses are the legal terms that an
end-user must abide by to use the software legally. This
includes installing, using, or integrating the software in
other pieces of software. Common things the license covers
are personal versus commercial use, how and where soft-
ware may be installed, and whether or not the end-user may
modify the software.

There is much more to licensing than just “is this software
open source or not?” If you are releasing software, you can
choose from hundreds of available licenses. Why are there so
many, and what are the differences between them? What you
choose affects how users can interact with your software.

As developers, we need to be keenly aware of the licenses
that we use in our own software. Licenses differ in the liber-
ties granted to a developer. And different licenses can have
very serious legal repercussions for a company. Have you
ever worked for a company with a strict “No GPL1 Software”
policy? There is a very real reason for that.

While software can be used anywhere in the world, my expe-
rience and view for this article will be United States-focused. I
am not a lawyer. If you are unsure how something may work
in your country, I would consult with a lawyer familiar with
your local copyright laws. Consider the following descrip-
tions a view on the intentions of the various licenses rather
than hard legal advice.

No License
Have you ever come across a repository that you would

love to use, but there is no license file? Congratulations, you
have come across a library or project where you legally have
no usage rights. You should avoid this project at all costs.

A core component of any license is the rights and rules
around using a particular piece of software. If there is no
license, the copyright holder holds all the cards. They have
not granted you any usage rights, and they have not granted
you access to the source code, even if you are looking at the
code on GitHub or another service. They may come after you
legally for using their intellectual property without permis-
sion.

While I would love to be altruistic about this, this is the
world we live in, thanks to modern copyright laws. No license
means no rights, even basic usage rights. The project is just

1 GPL: https://www.gnu.org/licenses/gpl-3.0.en.html

taking advantage of lax policy policing by code repository
providers.

Public Domain
The Public Domain2 is not so much a license in-and-of-it-

self, but rather a declaration of the abandonment of copyright
on a work. In the United States, this declaration is known as

“dedicating.” A work dedicated to the Public Domain is usually
identified with some accompanying text of “This work is
dedicated to the public domain.” Once a work is dedicated to
the public domain, the work is no longer owned by any entity
and free for anyone to use.

The Public Domain is incredibly problematic from a legal
standpoint. The first problem is that, like licensing, dedica-
tion to the Public Domain must be declared. Many countries,
including the United States, assign copyright automatically to
the author. There is no legal authority one is required to go
through to establish copyright (though there are legal steps
one can do to help protect and declare the copyright).

Nothing is automatically entered into the Public Domain
except under a few conditions. A work enters the Public
Domains by being dedicated by the original author as
mentioned above, or if copyright expires. Copyright can
expire either naturally or if the author does not file for an
extension. Once copyright is removed, a work enters the
Public Domain.

While this sounds straightforward, copyright is a compli-
cated thing. The rules differ for people versus corporate
entities. Copyright is transferrable, and if this is not metic-
ulously documented, copyright ownership can get cloudy.
Authors of works may or may not have done so “for hire”
(how most software is developed). Corporate acquisitions
and breakups can make it hard to know who owns what
copyright. Shifting rules of the length of copyright can make
it hard to know if a work is due to automatically age out to
Public Domain status.

Assuming copyright ownership is actually known, there
is no legal definition of what “Public Domain” is. There are
rules for copyright as part of the Berne Convention of 1988,
but countries can still enact their own rules. For example, The
US does not require dedication for works before 1988 and

2 The Public Domain:
https://fairuse.stanford.edu/overview/public-domain/welcome

November 2021November 2021
Volume 20 - Issue 11Volume 20 - Issue 11

phparch.com
https://www.gnu.org/licenses/gpl-3.0.en.html
https://fairuse.stanford.edu/overview/public-domain/welcome
https://www.diegodev.com?utm_source=phparch&utm_medium=magazine&utm_campaign=2022_april

24 \ April 2022 \ www.phparch.com

Education Station
Which License to Choose?

declared anything before 1927 as Public Domain (with excep-
tions). Copyright is also handled country-by-country so
that a work could be Public Domain in one country but not
another. This presents a second hurdle for anyone wanting to
use Public Domain software.

Even scarier? The copyright holder could potentially
rescind Public Domain status3 with the way US copyright
works. Now, all of a sudden, a library your company uses is
no longer Public Domain. What do you do? Since there was
no license agreement, it is unknown, both theoretically and
legally, what would happen if such a thing were to occur.

At the end of the day, much like with no license, Public
Domain licensed software is a minefield and should be
avoided.

Public Domain-like License
What happens when you want the legal requirements of a

license but the freedom of Public Domain? You get a variety
of Public Domain-like licenses that effectively say, “I do not
care what you do with this software, and I am putting that
in writing as the copyright holder.” There are a handful of
licenses available that fall under this category, but not all of
these licenses are considered “Open Source.”

The Creative Commons is probably the most popular suite
of licenses from this type of software license. The Creative
Commons is designed as a variety of licenses for authors to
use to better control how their works are used. However, it
is not recommended they be used for software4. Creative
Commons 05 is the closest to a Public Domain declaration
you can get while still providing legal text.

Another popular license is the Unlicense6, which includes
anti-copyright language to make it more applicable around
the world. It includes an official copyright waiver as well as
a “no warranty” statement, which is an important declara-
tion missing from many of the Public Domain-like licenses.
In fact, the Unlicense is considered open-source compatible,
unlike other licenses in this category.

While there are a handful of Public Domain-like licenses,
many are legally dubious. One of the more famous examples
is the “Don’t be a Dick7” license. On the surface, it looks like
something akin to the Unlicense, but the main focus of the
license is you are granted rights if you “aren’t a dick.” Unfor-
tunately, there is no legal definition for what this means, and
the license even mentions that the few examples given are not
exhaustive. At any point, the copyright holder can just decide
a user has broken the license based on whatever behavior the
author deems is “dickish.”

3 rescind Public Domain status: https://www.techdirt.com/?p=83508
4 software: https://phpa.me/creativecommons-can-i
5 Creative Commons 0: https://creativecommons.org/?p=12354
6 Unlicense: https://en.wikipedia.org/wiki/Unlicense
7 Don’t be a Dick: https://dbad-license.org

It is my opinion that short of a Public Domain-like license
approved by the Open Source Initiative, you should avoid
these types of licenses.

Proprietary License
A proprietary license is essentially going to be any license

that is unique to an individual piece of software. For example,
when you install a piece of software like Microsoft Office, you
agree to what they call an “End User License Agreement.” This
agreement contains information that you might expect—it
details how you may install the software, how usage is granted,
and all kinds of other legal stuff.

While a company may copy-and-paste much of the text
between their EULAs, each software’s license governs just
that piece of software. The Windows EULA does not cover
Microsoft Office, and the Windows 10 EULA does not cover
Windows 11 or previous versions of the software. The license
is unique to that specific piece of software.

Are EULAs and Software Licenses different? It depends on
who you ask, as they can cover many of the same topics.
For what topics we are covering, it is pretty safe to equate
an End User License Agreement to various other Software
Licenses. One main difference is EULAs tend to not differ-
entiate between source code and compiled code, where
open-source licenses may be explicit on those two topics.

Source Sharing
While many proprietary licenses restrict gaining access to

the source code of a particular piece of software, that is not
a defining factor of a proprietary license. Some software may
come with an option called Source Sharing, where a software
provider allows a customer access to the source code.

I have come across this mostly in enterprise software
where the software provider sells software that solves many
common problems for their customers, but customers may
have very unique workflows or requirements. I used to work
in the insurance industry, and all of our back-office software
came with a source-sharing agreement. Each release of the
software included a full copy of the source code we would
patch with our custom changes and compile on our systems.

We would modify the software to work exactly how we
needed it and work with the vendor and other customers
to get our patches merged into the mainline code by the
vendor. Customers were allowed to share their patches with
the system among themselves. It was very much like a limited
open-source ecosystem.

Where source sharing differs from Open Source licensing,
the original vendor still controls the source. While we
were granted access to the software, we could only share it
with other customers. We were still required to pay a hefty
licensing fee to get access to the software. Most damning of
all, we found out after doing a license audit that the changes
we made had an automatic copyright transfer to the vendor.

phparch.com
https://www.techdirt.com/?p=83508
https://phpa.me/creativecommons-can-i
https://creativecommons.org/?p=12354
https://en.wikipedia.org/wiki/Unlicense
https://dbad-license.org

 www.phparch.com \ April 2022 \ 25

Education Station
Which License to Choose?

What that meant was that the original vendor could, at any
time, take our patches and sell them as their own. They could
even take our patches and lock them behind an even more
expensive license. While we had access to the source code,
the proprietary license dictated that we did not own any of
the code, even the code we wrote.

Open Source Licensing
Many people do not realize that despite open-source soft-

ware arguably being the original way software was distributed,
the term “Open Source Software” was not codified until 1998.
This official definition is called “The Open Source Definition8”
and was published by the Open Source Initiative as a copy
of the Debian Free Software Guidelines9. These rules specify
what makes a piece of software Open Source.

A collective known as the Open Source Initiative10 is a
group that helps govern and guide open-source software. This
includes maintaining the “Open Source Definition” as well as
providing various resources for open source projects. One of
their most important projects is a list of open-source licenses
that they consider compatible with the idea of Open Source.

For a piece of software to be considered open source, it
must meet the following guidelines11 from Wikipedia:

1. Free redistribution: The license shall not restrict
any party from selling or giving away the software as
a component of an aggregate software distribution
containing programs from several different sources.
The license shall not require a royalty or other fee for
such sale.

2. Source code: The program must include source code,
and must allow distribution in source code as well
as compiled form. Where some form of a product
is not distributed with source code, there must be a
well-publicized means of obtaining the source code
for no more than a reasonable reproduction cost
preferably, downloading via the Internet without
charge. The source code must be the preferred form
in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed.
Intermediate forms such as the output of a preproces-
sor or translator are not allowed.

3. Derived works: The license must allow modifica-
tions and derived works, and must allow them to be
distributed under the same terms as the license of the
original software.

4. Integrity of the author’s source code: The license
may restrict source-code from being distributed
in modified form only if the license allows the

8 The Open Source Definition:
https://en.wikipedia.org/wiki/The_Open_Source_Definition
9 Debian Free Software Guidelines: https://w.wiki/4z9Q
10 Open Source Initiative: https://opensource.org
11 guidelines: https://w.wiki/4z9P

distribution of “patch files” with the source code for
the purpose of modifying the program at build time.
The license must explicitly permit distribution of
software built from modified source code. The license
may require derived works to carry a different name
or version number from the original software.

5. No discrimination against persons or groups: The
license must not discriminate against any person or
group of persons.

6. No discrimination against fields of endeavor: The
license must not restrict anyone from making use of
the program in a specific field of endeavor. For exam-
ple, it may not restrict the program from being used
in a business, or from being used for genetic research.

7. Distribution of license: The rights attached to the
program must apply to all to whom the program is
redistributed without the need for execution of an
additional license by those parties.

8. License must not be specific to a product: The
rights attached to the program must not depend
on the program’s being part of a particular software
distribution. If the program is extracted from that
distribution and used or distributed within the terms
of the program’s license, all parties to whom the
program is redistributed should have the same rights
as those that are granted in conjunction with the
original software distribution.

9. License must not restrict other software: The license
must not place restrictions on other software that
is distributed along with the licensed software. For
example, the license must not insist that all other
programs distributed on the same medium must be
open-source software.

10. License must be technology-neutral: No provision
of the license may be predicated on any individual
technology or style of interface.

Smelly Open Source
Much like Public Domain-like licensing, many licenses

look like open-source licenses but actually restrict what the
user can do. The JSON License12 is a perfect example with its
famous line, “The Software shall be used for Good, not Evil.”

What is legally Good, and what is legally Evil? Even outside
of the legal definitions, an open-source license should not,
and cannot, restrict the user in such arbitrary ways. A truly
open source software license does not restrict what the user
can do nor force the user to do specific things. Rule #6 of
the Open Source Definition expressly invalidates anything
licensed under licenses like the JSON license.

12 The JSON License: https://www.json.org/license.html

phparch.com
https://en.wikipedia.org/wiki/The_Open_Source_Definition
https://w.wiki/4z9Q
https://opensource.org
https://w.wiki/4z9P
https://www.json.org/license.html

26 \ April 2022 \ www.phparch.com

Education Station
Which License to Choose?

Permissive Licenses
Permissive licenses are licenses that are not copyleft licenses

(more about them in a moment) and allow proprietary deriv-
ative works. In many ways, this mirrors how software was
originally handled—a developer puts software out into the
world and allows anyone else to use it, even if that code gets
locked up in proprietary software. The general idea is that the
software being available makes the developer’s life easier.

A few of the most common permissive licenses are the
MIT13, BSD14, and Apache 2.0 licenses15. The MIT and BSD
licenses closely resemble each other, though there are a
variety of BSD licenses that have come out through the years.
This general format is what has inspired many of the “smelly”
open source licenses and shorter licenses.

You may see the BSD license also called the Original BSD
License, and anywhere from the 0 Clause BSD License to a 4
Clause BSD license. Over the years, various rules surrounding
licensed software have changed. For example, the 2 Clause
BSD license drops a non-endorsement requirement that the
3 Clause BSD license includes. The 3 Clause BSD dropped
an advertising requirement that the 4 Clause BSD license
imposed. These days the 2 or 3 Clause BSD license is typically
used.

Personally, I see permissive licenses working best in library
or component code or places where the code is clearly
intended to be used by other code. For example, I release my
dragonmantank/cron-expression16 library under the MIT
license because it is meant to be used with someone else’s
code. I am more interested in solving a problem for a devel-
oper rather than making sure that the developer releases any
changes back into the wild.

The fact that permissive licenses do allow for proprietary
usage is a major downside to this type of license. One of
the most famous examples of this was that Windows 2000
contained BSD licensed code17 as part of the networking tools
and stack. People were shocked at this, but Microsoft was well
within their rights to use the code as long as they followed the
license. And they did. If you are OK with allowing your code
to be used this way, permissive licenses are a good selection
for your code.

Copyleft Licenses
This brings us to Copyleft licenses. Copyleft licenses differ

from permissive licenses in that they require derivative soft-
ware to be licensed under the license of the software that was
being integrated. As mentioned above, it is perfectly accept-
able for permissive-licensed code to be used in software that
does not share that same license (ala BSD code being used

13 MIT: https://opensource.org/licenses/MIT
14 BSD: https://opensource.org/licenses/BSD-3-Clause
15 Apache 2.0 licenses: https://opensource.org/licenses/Apache-2.0
16 dragonmantank/cron-expression:
https://github.com/dragonmantank/cron-expression
17 BSD licensed code: https://phpa.me/everything2-bsd-windows

in proprietary code). On the other hand, copyleft software
makes it a requirement that the code stay under the same
license. Copyleft licenses tend to cater toward software
freedom more than developer freedom.

The GPL18 is usually the go-to example of a copyleft license.
The GPL itself was born out of the frustration that propri-
etary software was causing to developers and how software
was increasingly stripping developers of the rights they used
to have. As part of this, the requirement that GPL-derived
software must also be GPL licensed was a conscious deci-
sion. This decision forced developers that altered the software
to distribute those changes when someone asked. In fact, a
derivative license called the Affero GPL19 (AGPL) even goes
so far as to say that anyone that simply accesses the code can
ask for the source code changes.

I find that copyleft licenses, especially the GPL itself, work
best for full applications. Since applications tend to solve
much larger problems and generally involve a huge amount of
developer hours, it makes much more sense to keep ill actors
from taking the open-source software and just renaming it
and slapping a proprietary label. Imagine if the Linux kernel
was released under the MIT license. Well, we know what
happens.

Two popular operating systems are based on BSD code:

1. The macOS base operating system called Darwin20

2. The Orbis OS21 that powers the Playstation 4 and
Playstation 5

While Darwin started out very open, Apple increasingly
slowed down upstream patches to the OS. While Apple is very
upfront about its use of BSD software, very few realize that
the Playstation is running a BSD-powered operating system.
Sure, both Sony and Apple are legally following what the BSD
license tells them to, but there is a vast amount of work that
neither company is required to release back to the ecosystem.

So What do You do?
When you go to release software, think about your goal

for users. Ask yourself this question, “should the software
be proprietary or open-source?” While I wholeheartedly
support open source and believe it is the way software should
be distributed, I use an iPad and iPhone, and I use Windows
for a lot of video gaming. I do a lot of open source work, but
the vast majority of my life has been spent making propri-
etary software.

If you release software as open-source, do it the proper way.
Use a license approved by the Open Source Initiative, and
make sure you follow the Open Source Definition for your

18 GPL: https://opensource.org/licenses/GPL-3.0
19 Affero GPL: https://opensource.org/licenses/AGPL-3.0
20 Darwin: https://w.wiki/4wKH
21 Orbis OS: https://www.extremetech.com/?p=159476

phparch.com
https://opensource.org/licenses/MIT
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/Apache-2.0
https://github.com/dragonmantank/cron-expression
https://phpa.me/everything2-bsd-windows
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/AGPL-3.0
https://w.wiki/4wKH
https://www.extremetech.com/?p=159476

 www.phparch.com \ April 2022 \ 27

Education Station
Which License to Choose?

software. It is not much work, and you will find a license that
fits your software’s goals.

If you are just a developer, keep in mind what software
you use and make sure you follow the license. Pay particular
attention to what the dependencies of your dependencies
require. Comcast has a license checker22 that you can use to
scan your composer.lock file to help suss out this information.
Understand what it means to consume software under the
different licenses.

I hope all this information helps clear up a lot of the
misconceptions and unknown pitfalls of licensing. I would
love to live in a world where we just share code and do not
have to worry about the legalities of software design, but this
is the world we live in. All I can say is help spread open-source
software, and use it responsibly.

22 license checker: https://github.com/Comcast/php-legal-licenses

 Chris Tankersley is a husband, father,
author, speaker, podcast host, and PHP
developer. Chris has worked with many
different frameworks and languages
throughout his twelve years of programming
but spends most of his day working in PHP
and Python. He is the author of Docker for
Developers and works with companies and
developers for integrating containers into
their workflows. @dragonmantank

Related Reading

• PHP is the Worst by Chris Tankersley,
September 2021
https://phpa.me/tankersley-sept-2021

• How to Build a REST API by Chris Tankersley,
May 2021
https://phpa.me/tankersley-may-2021

• Overriding Composer by Chris Tankersley,
October 2019
http://phpa.me/education-oct-19

D
ocker for D

evelopers, 2nd Edition

Tankersley

Chris Tankersley is a PHP Developer living in Northwest Ohio. He

has been developing PHP applications for more than ten years, across

a wide variety of frameworks and business needs. In addition to

programming, Chris manages hosting and server deployments for

developers that are looking for more than just what basic hosting

provides. He currently spends most of his time working with Sculpin,

Zend Framework 2, and Drupal.

Chris is also an author of many PHP articles for php[architect], as

well as a speaker, traveling around the US giving talks at many PHP-

based conferences. Chris also helped found the Northwest Ohio PHP

User Group. Chris is the PHP FIG representative for Sculpin, a static

site generator written in PHP, and the lead developer for the PHP

Mentoring website.

Docker For Developers is designed for developers

who are looking at Docker as a replacement for

development environments like virtualization,

or devops people who want to see how to take

an existing application and integrate Docker into

that work� ow. � is book covers not only how

to work with Docker, but how to make Docker

work with your application.

� is revised and expanded edition includes creating

custom images, working with Docker Compose and

Docker Machine, managing Logs, and 12-factor

applications.

You’ll learn how to work with containers, what they

are, and how they can help you as a developer.

See how Docker simpli� es building, testing, and

deploying distributed applications. By running

Docker and separating out the di� erent concerns of

your application you will have a more robust, scalable

application.

Learn how to use Docker to deploy your application

and make it a part of your deployment strategy,

helping not only ensure your environments are the

same but also making it easier to package and deliver.

www.phparch.com

Chris Tankersley

2nd Edition

Docker For Developers is designed for developers looking at
Docker as a replacement for development environments like
virtualization, or devops people who want to see how to take
an existing application and integrate Docker into their work-
flow.

This revised and expanded edition includes:
• Creating custom images
• Working with Docker Compose and Docker Machine
• Managing logs
• 12-factor applications

Order Your Copy
http://phpa.me/docker-devs

phparch.com
https://github.com/Comcast/php-legal-licenses
https://twitter.com/dragonmantank
https://phpa.me/tankersley-sept-2021
https://phpa.me/tankersley-may-2021
http://phpa.me/education-oct-19
https://phpa.me/docker-devs?utm_source=phparch&utm_medium=magazine&utm_campaign=2022_april

a php[architect] guide

Purchase Your Copy
https://phpa.me/php-development-book

Learn how to build dynamic and secure websites.
The book also walks you through building a typical Create-Read-
Update-Delete (CRUD) application. Along the way, you’ll get solid,
practical advice on how to add authentication, handle file uploads,
safely store passwords, application security, and more.

Available in Print+Digital and Digital Editions.

https://phpa.me/php-development-book

The Web Developer's
The Web Developer's

Start Your Free Trial Today
https://www.honeybadger.io/

Are exceptions all that keep you up at night?
Honeybadger gives you full confidence in the health of your production systems.

Exception, uptime, and cron monitoring, all in one place
 and easily installed in your web app. Deploy with

confidence and be your team's devops hero.

SECRET WEAPON!

DevOps monitoring, for developers. *gasp!*
Deploying web applications at scale is easier than it has ever been, but

monitoring them is hard, and it's easy to lose sight of your users.
Honeybadger simplifies your production stack by combining three of the

most common types of monitoring into a single, easy to use platform.

Exception Monitoring
Delight your users by

proactively monitoring for
and fixing errors.

Uptime Monitoring
Know when your external
services go down or have

other problems.

Check-In Monitoring
Know when your background
jobs and services go missing

or silently fail.

Honeybadger provides all the context you need to understand what is causing an exception

