
HTTP Burritos

HTTP Tortilla

Life After GIMM

A
LS

O
 IN

SI
D

E The Workshop:
Minicli

DDD Alley:
First, Make it Easy

PHP Puzzles:
Maze Rats, Part 2

Security Corner:
Tabletop: Planning for Disaster

Education Station:
AI is not Coming For Your Job

PSR Pickup:
PSR-20: Clock

Artisan Way:
ADR vs MVC

finally{}:
CatAIstrophe

 www.phparch.com \ May 2023 \ 37

Artisan Way

ADR vs MVC
Matt Lantz

In ADR or Action-Domain-Response, we maintain a three-piece pattern that lets us split our
responsibilities. The classic MVC structure or Model-View-Controller is prevalent across all
languages in the web development industry. Let’s take a closer look at both.

A refreshing and exciting feeling wafts over each developer
when they first write that line in what I suspect is iTerm2.

$ laravel new kickass-site

or, more classically
$ composer create-project laravel/laravel kickass-site

More often than not, the next step is to contemplate
which front-end framework to use and begin coding. Most
developers will use customized artisan commands, generate
their tests and resources, and map complex business enti-
ties to elegant models with transparent object layers. Most
Laravel developers will build their applications in a classic
MVC structure. However, some will explore working with
single-responsibility controllers; some will integrate Actions
throughout the application. Some will explore event-driven
systems, and some will dive deep into domain-driven design.

The classic MVC structure or Model-View-Controller
is prevalent across all languages in the web development
industry. More often than not, Laravel developers will begin by
creating a route in the web.php file, pointing it to a Controller,
and start tinkering with their view or their Model. Beyond
that, in many cases, developers will implement Middleware
elements as well as Jobs, Events, and Listeners. What often
happens in this classic MVC structure with sprinkles of
enhancements is that business logic begins to creep through
the various layers making it harder to maintain consistency
or enable teams to work on code without impacting multiple
layers. This dilemma is why enterprise teams and scaling
organizations often begin implementing SPA solutions and
breaking code into further and further micro-services, all the
while hoping that the breakdown of the monolith is what will
resolve the cross-layer contamination of the business logic.

Views often contain permission checks, and Models
become somewhat bloated with complex queries. Controllers
10 years ago were bloated with code logic, but these days it’s
now sprinkled across Services or Models, and in the last few
years, we’ve seen an active rise in the use of Actions. To avoid
repetition, developers can use these self-contained code snip-
pets in Commands, Controllers, and Services alike. The value
gain is apparent; it enables developers to centralize where the
logic is contained. This same pattern has become popular
across front-end systems in how Vue and Livewire enable
developers to have Components. In these cases, you have
a component that can contain all logic of that entity in one

file or a small set of files. However, these Components can
quickly become bloated and handle all an entity’s interactions,
thereby becoming spaghetti-like. Each element aims to help
developers move logic out of Blade templates and Controllers
into reusable spaces.

Laravel itself has enabled developers to start with a very
barren starter structure, and they can set things accordingly
within their structure of choice. This benefit is that it allows
developers to choose their own architecture. However, as
mentioned above, most developers will often build things
as an MVC structure and then sprinkle in other features as
needed without documenting or designing the architecture
as a whole. It becomes an MVC with random add-on patterns.

Paul M. Jones, a well-recognized member of the PHP
community, proposed an alternative architecture in 2014
titled ADR or Action-Domain-Response. Its overall struc-
ture helps developers remove the repetition of business logic
in their applications by drawing much deeper lines in the
sand. Implementing the ADR pattern in Laravel would likely
increase the total development time while reducing mental

phparch.com

38 \ May 2023 \ www.phparch.com

Artisan Way
ADR vs MVC

strain and code complexity, thus enabling less complex main-
tenance.

Paul has some examples on GitHub of how the ADR pattern
can be implemented and provides an example of refactoring
an MVC to an ADR approach. Below are his examples: (See
Listing 1 on the next page) https://phpa.me/refactoring1.

In ADR, we maintain a three-piece pattern that lets us
split our responsibilities. Actions are simple single tasks.
The actions would follow the pattern of Ui/Web/Blog/Create/
CreateBlogAction.php. Furthermore, you would have the
Domain/Blog directory containing the Blog model and
Service type classes interacting with the Model. Within the Ui/
Web/Blog, you would have classes that build the entity’s listing
or provide a single view of a Form for editing the entity with
a Responder. In some cases, we see how Responders can work
much like Components since they can contain logic and use
templates where needed. We can quickly see how we can also
handle something like Api/Blog/Create/CreateBlogResponder.
php or Ui/Web/Blog/Create/CreateBlogResponder.php; each of
these can be defined in our action based on the request and

1 https://phpa.me/refactoring

Listing 2.

 1. class BlogCreateAction
 2. {
 3. public function __construct(
 4. Request $request,
 5. BlogCreateResponder $responder,
 6. BlogService $domain
 7.) {
 8. // ...
 9. }
10.
11. public function __invoke()
12. {
13. if ($this->request->isPost()) {
14. $data = $this->request->getPost('blog');
15. $blog = $this->domain->create($data);
16. } else {
17. $blog = $this->domain->newInstance();
18. }
19.
20. return $this->responder->response($blog);
21. }
22. }

Listing 3.

 1. class BlogCreateResponder
 2. {
 3. public function __construct(
 4. Response $response,
 5. TemplateView $view
 6.) {
 7. // ...
 8. }
 9.
10. public function response(BlogModel $blog)
11. {
12. // is there an ID on the blog instance?
13. if ($blog->id) {
14. // yes, which means it was saved already.
15. // redirect to editing.
16. $this->response->setHeader(
17. 'Location',
18. '/blog/edit/{$blog->id}'
19.);
20. } else {
21. // no, which means it has not been
22. // saved yet. show the creation form with
23. // the current data.
24. $html = $this->view->render(
25. 'create.php',
26. ['blog' => $blog]
27.);
28. $this->response->setContent($html);
29. }
30.
31. return $this->response;
32. }
33. }

Listing 1.

 1. resources/
 2. templates/
 3. blog/
 4. index.php
 5. create.php
 6. read.php
 7. update.php
 8. delete.php
 9. _comments.php
10. src/
11. Domain/
12. Blog/
13. BlogModel.php
14. BlogService.php
15. Ui/
16. Web/
17. Blog/
18. Index/
19. BlogIndexAction.php
20. BlogIndexResponder.php
21. Create/
22. BlogCreateAction.php
23. BlogCreateResponder.php
24. Read/
25. BlogReadAction.php
26. BlogReadResponder.php
27. Update/
28. BlogUpdateAction.php
29. BlogUpdateResponder.php
30. Delete/
31. BlogDeleteAction.php
32. BlogDeleteResponder.php

phparch.com
https://phpa.me/refactoring

 www.phparch.com \ May 2023 \ 39

Artisan Way
ADR vs MVC

its expected platform, which falls into better alignment with
Bob Martin’s Clean Architecture. (See Listing 2)

Within this example, we can see clearly the various cases
where business logic can be injected into the domain and
detached from the Responder and Action. (See Listing 3)

Similarly, we can see here how the response is mitigated,
and the template is rendered and injected into the response.

We are seeing more and more systems arise in the Laravel
community, which are helping to decouple the business logic
from the presentation layer. Things like Livewire Components
enable developers to centralize logic into single files. It also
allows developers to remove JavaScript coding requirements,
resulting in less maintenance. However, it doesn’t resolve the
issue of business logic being in both the presentation layer
and the Component itself. Systems like Inertia enable devel-
opers to build applications with a more formal REST backend
and have their VueJS components contain all the presentation
layers and the corresponding logic. In either of these cases,
we still see the persistence of logic crossing multiple applica-
tion layers. There are some valid critiques of ADR, which Paul
M. Jones has, in some cases, addressed in his GitHub repo
detailing the pattern. Building applications with this pattern
can become verbose with numerous files, many of which are
very small and somewhat repetitive. There are also concerns

about logic being placed poorly across these layers as well. We
can see that we gain the option of more granular testing and
overall improvements to the readability of the code within
the ADR pattern, but ultimately, it comes at a cost. In the
outlined case above, we can see some easy ways to split up our
view handling and reduce the probability of injecting logic
into the presentation layer.

 Matt has been developing software for over
13 years. He started his career as a developer
working for a small marketing firm, but
has since worked for a few Fortune 500
companies, lead a couple teams of devel-
opers and is currently working as a Cloud
Architect. He’s contributed to the open source
community on projects such as Cordova and
Laravel. He also made numerous packages
and helped maintain a few. He’s worked
with Start Ups and sub-teams of big teams
within large divisions of companies. He’s
a passionate developer who often fills his
weekend with extra freelance projects, and
code experiments. @MattyLantz

Harness the power of the Laravel
ecosystem to bring your idea to life.

Written by Laravel and PHP professional
Michael Akopov, this book provides a concise
guide for taking your soft ware from an idea
to a business. Focus on what really matters to
make your idea stand out without wasting time
on already-solved problems.

Order Your Copy
https://phpa.me/beyond-laravel

phparch.com
https://twitter.com/MattyLantz
https://phpa.me/beyond-laravel

a php[architect] print edition

Order Your Copy
phpa.me/grumpy-cookbook

Learn how a Grumpy Programmer approaches
improving his own codebase, including all of the
tools used and why.

The Complementary PHP Testing Tools Cookbook is
Chris Hartjes’ way to try and provide additional tools
to PHP programmers who already have experience
writing tests but want to improve. He believes that
by learning the skills (both technical and core)
surrounding testing you will be able to write tests
using almost any testing framework and almost any
PHP application.

Available in Print+Digital and Digital Editions.

http://phpa.me/grumpy-testing-book
https://phpa.me/grumpy-cookbook

